Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Cell ; 150(3): 590-605, 2012 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-22863011

RESUMO

Endothelium in embryonic hematopoietic tissues generates hematopoietic stem/progenitor cells; however, it is unknown how its unique potential is specified. We show that transcription factor Scl/Tal1 is essential for both establishing the hematopoietic transcriptional program in hemogenic endothelium and preventing its misspecification to a cardiomyogenic fate. Scl(-/-) embryos activated a cardiac transcriptional program in yolk sac endothelium, leading to the emergence of CD31+Pdgfrα+ cardiogenic precursors that generated spontaneously beating cardiomyocytes. Ectopic cardiogenesis was also observed in Scl(-/-) hearts, where the disorganized endocardium precociously differentiated into cardiomyocytes. Induction of mosaic deletion of Scl in Scl(fl/fl)Rosa26Cre-ER(T2) embryos revealed a cell-intrinsic, temporal requirement for Scl to prevent cardiomyogenesis from endothelium. Scl(-/-) endothelium also upregulated the expression of Wnt antagonists, which promoted rapid cardiomyocyte differentiation of ectopic cardiogenic cells. These results reveal unexpected plasticity in embryonic endothelium such that loss of a single master regulator can induce ectopic cardiomyogenesis from endothelial cells.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Endotélio Vascular/embriologia , Coração/embriologia , Proteínas Proto-Oncogênicas/metabolismo , Animais , Caderinas/metabolismo , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Hemangioblastos , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Proteínas com Homeodomínio LIM/metabolismo , Mesoderma/metabolismo , Camundongos , Miócitos Cardíacos/citologia , Placenta/irrigação sanguínea , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Gravidez , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo , Proteína 1 de Leucemia Linfocítica Aguda de Células T , Fatores de Transcrição/metabolismo , Saco Vitelino/irrigação sanguínea
2.
Nat Immunol ; 13(10): 963-71, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22941246

RESUMO

Expression of the cell-surface antigen CD10 has long been used to define the lymphoid commitment of human cells. Here we report a unique lymphoid-primed population in human bone marrow that was generated from hematopoietic stem cells (HSCs) before onset of the expression of CD10 and commitment to the B cell lineage. We identified this subset by high expression of the homing molecule L-selectin (CD62L). CD10(-)CD62L(hi) progenitors had full lymphoid and monocytic potential but lacked erythroid potential. Gene-expression profiling placed the CD10(-)CD62L(hi) population at an intermediate stage of differentiation between HSCs and lineage-negative (Lin(-)) CD34(+)CD10(+) progenitors. CD62L was expressed on immature thymocytes, and its ligands were expressed at the cortico-medullary junction of the thymus, which suggested a possible role for this molecule in homing to the thymus. Our studies identify the earliest stage of lymphoid priming in human bone marrow.


Assuntos
Células da Medula Óssea/imunologia , Células-Tronco Hematopoéticas/metabolismo , Selectina L/biossíntese , Neprilisina/biossíntese , Antígenos CD34/imunologia , Antígenos CD34/metabolismo , Antígenos CD7/imunologia , Células da Medula Óssea/metabolismo , Diferenciação Celular , Linhagem da Célula , Células Cultivadas , Perfilação da Expressão Gênica , Células-Tronco Hematopoéticas/imunologia , Humanos , Timócitos/imunologia , Timócitos/metabolismo , Timo/metabolismo , Regulação para Cima
3.
Stem Cells ; 41(10): 971-985, 2023 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-37534584

RESUMO

Recent studies suggest that chromosomal cohesin complex proteins are important in regulating hematopoiesis and may contribute to myeloid malignancies. To investigate the effects of perturbing the cohesin subunit protein RAD21 on normal hematopoiesis, we used conditional knockout (cKO) mouse models. While cohesin is vital for hematopoietic stem cell (HSC) function, Rad21 haploinsufficiency (Rad21Δ/+) led to distinct hematopoietic phenotypes. Our findings revealed that Rad21Δ/+ cells exhibited decreased hematopoietic reconstitution in competitive bone marrow transplantation assays. This reduction in peripheral blood chimerism was specifically observed in the lymphoid compartment, while the chimerism in the myeloid compartment remained unaffected. Rad21 haploinsufficiency also resulted in changes in the hematopoietic stem and progenitor cells (HSPC) and myeloid progenitor compartments, with a significant accumulation of granulocyte-macrophage progenitors in the bone marrow. We observed differential gene expression in Rad21Δ/+ LSK (Lin- Sca1-Kit+) cells, including genes required for HSPC function and differentiation, such as Setdb1, Hmga2, Ncor1, and Myb. In addition, we observed a notable decrease in the expression of genes related to the interferon response and a significant reduction in the expression of genes involved in the IL2-STAT5 signaling pathways. Our studies suggest that RAD21 protein and level of its post-translational modifications in the bone marrow cells may play a potential role in hematopoiesis. Overall, Rad21 haploinsufficiency impairs hematopoietic differentiation and increases HSC self-renewal.


Assuntos
Proteínas Cromossômicas não Histona , Transplante de Células-Tronco Hematopoéticas , Camundongos , Animais , Diferenciação Celular , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Hematopoese/genética , Camundongos Endogâmicos C57BL , Correpressor 1 de Receptor Nuclear/metabolismo , Coesinas
4.
Stem Cells ; 2020 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-32997844

RESUMO

Cohesin recently emerged as a new regulator of hematopoiesis and leukemia. In addition to cohesin, whether proteins that regulate cohesin's function have any direct role in hematopoiesis and hematologic diseases have not been fully examined. Separase, encoded by the ESPL1 gene, is an important regulator of cohesin's function. Canonically, protease activity of Separase resolves sister chromatid cohesion by cleaving cohesin subunit-Rad21 at the onset of anaphase. Using a Separase haploinsufficient mouse model, we have uncovered a novel role of Separase in hematopoiesis. We report that partial disruption of Separase distinctly alters the functional characteristics of hematopoietic stem/progenitor cells (HSPCs). Although analyses of peripheral blood and bone marrow of Espl1+/Hyp mice broadly displayed unperturbed hematopoietic parameters during normal hematopoiesis, further probing of the composition of early hematopoietic cells in Espl1+/Hyp bone marrow revealed a mild reduction in the frequencies of the Lin- Sca1+ Kit- (LSK) or LSK CD48+ CD150- multipotent hematopoietic progenitors population without a significant change in either long-term or short-term hematopoietic stem cells (HSCs) subsets at steady state. Surprisingly, however, we found that Separase haploinsufficiency promotes regeneration activity of HSCs in serial in vivo repopulation assays. In vitro colony formation assays also revealed an enhanced serial replating capacity of hematopoietic progenitors isolated from Espl1+/Hyp mice. Microarray analysis of differentially expressed genes showed that Separase haploinsufficiency in HSCs (SP-KSL) leads to enrichment of gene signatures that are upregulated in HSCs compared to committed progenitors and mature cells. Taken together, our findings demonstrate a key role of Separase in promoting hematopoietic regeneration of HSCs.

5.
Haematologica ; 106(10): 2566-2577, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32855276

RESUMO

Combination treatment has proven effective for patients with acute promyelocytic leukemia, exemplifying the importance of therapy targeting multiple components of oncogenic regulation for a successful outcome. However, recent studies have shown that the mutational complexity of acute myeloid leukemia (AML) precludes the translation of molecular targeting into clinical success. Here, as a complement to genetic profiling, we used unbiased, combinatorial in vitro drug screening to identify pathways that drive AML and to develop personalized combinatorial treatments. First, we screened 513 natural compounds on primary AML cells and identified a novel diterpene (H4) that preferentially induced differentiation of FLT3 wild-type AML, while FLT3-ITD/mutations conferred resistance. The samples responding to H4, displayed increased expression of myeloid markers, a clear decrease in the nuclear-cytoplasmic ratio and the potential of re-activation of the monocytic transcriptional program reducing leukemia propagation in vivo. By combinatorial screening using H4 and molecules with defined targets, we demonstrated that H4 induces differentiation by the activation of the protein kinase C (PKC) signaling pathway, and in line with this, activates PKC phosphorylation and translocation of PKC to the cell membrane. Furthermore, the combinatorial screening identified a bromo- and extra-terminal domain (BET) inhibitor that could further improve H4-dependent leukemic differentiation in FLT3 wild-type monocytic AML. These findings illustrate the value of an unbiased, multiplex screening platform for developing combinatorial therapeutic approaches for AML.


Assuntos
Antineoplásicos , Diterpenos , Leucemia Mieloide Aguda , Acetamidas/farmacologia , Antineoplásicos/farmacologia , Azepinas/farmacologia , Diferenciação Celular , Linhagem Celular Tumoral , Diterpenos/farmacologia , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Mutação , Tirosina Quinase 3 Semelhante a fms/genética
6.
EMBO J ; 34(6): 759-77, 2015 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-25564442

RESUMO

Scl/Tal1 confers hemogenic competence and prevents ectopic cardiomyogenesis in embryonic endothelium by unknown mechanisms. We discovered that Scl binds to hematopoietic and cardiac enhancers that become epigenetically primed in multipotent cardiovascular mesoderm, to regulate the divergence of hematopoietic and cardiac lineages. Scl does not act as a pioneer factor but rather exploits a pre-established epigenetic landscape. As the blood lineage emerges, Scl binding and active epigenetic modifications are sustained in hematopoietic enhancers, whereas cardiac enhancers are decommissioned by removal of active epigenetic marks. Our data suggest that, rather than recruiting corepressors to enhancers, Scl prevents ectopic cardiogenesis by occupying enhancers that cardiac factors, such as Gata4 and Hand1, use for gene activation. Although hematopoietic Gata factors bind with Scl to both activated and repressed genes, they are dispensable for cardiac repression, but necessary for activating genes that enable hematopoietic stem/progenitor cell development. These results suggest that a unique subset of enhancers in lineage-specific genes that are accessible for regulators of opposing fates during the time of the fate decision provide a platform where the divergence of mutually exclusive fates is orchestrated.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Diferenciação Celular/fisiologia , Elementos Facilitadores Genéticos/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Células-Tronco Hematopoéticas/citologia , Mesoderma/embriologia , Mioblastos Cardíacos/citologia , Proteínas Proto-Oncogênicas/metabolismo , Células Cultivadas , Imunoprecipitação da Cromatina , Perfilação da Expressão Gênica , Biblioteca Gênica , Células-Tronco Hematopoéticas/fisiologia , Humanos , Mesoderma/metabolismo , Análise em Microsséries , Modelos Biológicos , Dados de Sequência Molecular , Mioblastos Cardíacos/fisiologia , Análise de Sequência de RNA , Proteína 1 de Leucemia Linfocítica Aguda de Células T
7.
Planta ; 247(2): 369-379, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29022094

RESUMO

MAIN CONCLUSION: Presented here is the first Echinochloa colona leaf transcriptome. Analysis of gene expression before and after herbicide treatment reveals that E. colona mounts a stress response upon exposure to herbicide. Herbicides are the most frequently used means of controlling weeds. For many herbicides, the target site is known; however, it is considerably less clear how plant gene expression changes in response to herbicide exposure. In this study, changes in gene expression in response to herbicide exposure in imazamox-sensitive (S) and- resistant (R) junglerice (Echinochloa colona L.) biotypes was examined. As no reference genome is available for this weed, a reference leaf transcriptome was generated. Messenger RNA was isolated from imazamox-treated- and untreated R and S plants and the resulting cDNA libraries were sequenced on an Illumina HiSeq2000. The transcriptome was assembled, annotated, and differential gene expression analysis was performed to identify transcripts that were upregulated or downregulated in response to herbicide exposure for both biotypes. Differentially expressed transcripts included transcription factors, protein-modifying enzymes, and enzymes involved in metabolism and signaling. A literature search revealed that members of the families represented in this analysis were known to be involved in abiotic stress response in other plants, suggesting that imazamox exposure induced a stress response. A time course study examining a subset of transcripts showed that expression peaked within 4-12 h and then returned to untreated levels within 48 h of exposure. Testing of plants from two additional biotypes showed a similar change in gene expression 4 h after herbicide exposure compared to the resistant and sensitive biotypes. This study shows that within 48 h junglerice mounts a stress response to imazamox exposure.


Assuntos
Echinochloa/genética , Herbicidas/farmacologia , Imidazóis/farmacologia , Transcriptoma/efeitos dos fármacos , Echinochloa/efeitos dos fármacos , Análise de Sequência de RNA , Estresse Fisiológico
8.
Genome Res ; 22(7): 1212-21, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22499665

RESUMO

Adenovirus small e1a oncoprotein causes ~70% reduction in cellular levels of histone H3 lysine 18 acetylation (H3K18ac). It is unclear, however, where this dramatic reduction occurs genome-wide. ChIP-sequencing revealed that by 24 h after expression, e1a erases 95% of H3K18ac peaks in normal, contact-inhibited fibroblasts and replaces them with one-third as many at new genomic locations. The H3K18ac peaks at promoters and intergenic regions of genes with fibroblast-related functions are eliminated after infection, and new H3K18ac peaks are established at promoters of highly induced genes that regulate cell cycling and at new putative enhancers. Strikingly, the regions bound by the retinoblastoma family of proteins in contact-inhibited fibroblasts gain new peaks of H3K18ac in the e1a-expressing cells, including 55% of RB1-bound loci. In contrast, over half of H3K9ac peaks are similarly distributed before and after infection, independently of RB1. The strategic redistribution of H3K18ac by e1a highlights the importance of this modification for transcriptional activation and cellular transformation as well as functional differences between the RB-family member proteins.


Assuntos
Proteínas E1A de Adenovirus/metabolismo , Adenovírus Humanos/genética , Epigênese Genética , Genoma Humano , Histonas/metabolismo , Acetilação , Proteínas E1A de Adenovirus/genética , Adenovírus Humanos/metabolismo , Adenovírus Humanos/patogenicidade , Ciclo Celular , Transformação Celular Viral , Células Cultivadas , Imunoprecipitação da Cromatina , Fibroblastos/metabolismo , Fibroblastos/virologia , Regulação Viral da Expressão Gênica , Histonas/genética , Humanos , Pulmão/metabolismo , Pulmão/patologia , Pulmão/virologia , Anotação de Sequência Molecular/métodos , Nucleossomos/genética , Nucleossomos/metabolismo , Regiões Promotoras Genéticas , Fatores de Tempo , Ativação Transcricional
9.
Nucleic Acids Res ; 40(19): e152, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22790981

RESUMO

We have developed GFam, a platform for automatic annotation of gene/protein families. GFam provides a framework for genome initiatives and model organism resources to build domain-based families, derive meaningful functional labels and offers a seamless approach to propagate functional annotation across periodic genome updates. GFam is a hybrid approach that uses a greedy algorithm to chain component domains from InterPro annotation provided by its 12 member resources followed by a sequence-based connected component analysis of un-annotated sequence regions to derive consensus domain architecture for each sequence and subsequently generate families based on common architectures. Our integrated approach increases sequence coverage by 7.2 percentage points and residue coverage by 14.6 percentage points higher than the coverage relative to the best single-constituent database within InterPro for the proteome of Arabidopsis. The true power of GFam lies in maximizing annotation provided by the different InterPro data sources that offer resource-specific coverage for different regions of a sequence. GFam's capability to capture higher sequence and residue coverage can be useful for genome annotation, comparative genomics and functional studies. GFam is a general-purpose software and can be used for any collection of protein sequences. The software is open source and can be obtained from http://www.paccanarolab.org/software/gfam/.


Assuntos
Anotação de Sequência Molecular , Família Multigênica , Estrutura Terciária de Proteína , Proteínas/classificação , Software , Algoritmos , Sequência de Aminoácidos , Animais , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/classificação , Proteínas de Arabidopsis/genética , Sequência Consenso , Genômica/métodos , Camundongos , Estrutura Terciária de Proteína/genética , Proteínas/química , Proteínas/genética , Análise de Sequência de Proteína
10.
Nucleic Acids Res ; 40(Database issue): D1202-10, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22140109

RESUMO

The Arabidopsis Information Resource (TAIR, http://arabidopsis.org) is a genome database for Arabidopsis thaliana, an important reference organism for many fundamental aspects of biology as well as basic and applied plant biology research. TAIR serves as a central access point for Arabidopsis data, annotates gene function and expression patterns using controlled vocabulary terms, and maintains and updates the A. thaliana genome assembly and annotation. TAIR also provides researchers with an extensive set of visualization and analysis tools. Recent developments include several new genome releases (TAIR8, TAIR9 and TAIR10) in which the A. thaliana assembly was updated, pseudogenes and transposon genes were re-annotated, and new data from proteomics and next generation transcriptome sequencing were incorporated into gene models and splice variants. Other highlights include progress on functional annotation of the genome and the release of several new tools including Textpresso for Arabidopsis which provides the capability to carry out full text searches on a large body of research literature.


Assuntos
Arabidopsis/genética , Bases de Dados Genéticas , Genes de Plantas , Anotação de Sequência Molecular , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Genoma de Planta , Software
11.
BMC Bioinformatics ; 11: 120, 2010 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-20214776

RESUMO

BACKGROUND: An important problem in genomics is the automatic inference of groups of homologous proteins from pairwise sequence similarities. Several approaches have been proposed for this task which are "local" in the sense that they assign a protein to a cluster based only on the distances between that protein and the other proteins in the set. It was shown recently that global methods such as spectral clustering have better performance on a wide variety of datasets. However, currently available implementations of spectral clustering methods mostly consist of a few loosely coupled Matlab scripts that assume a fair amount of familiarity with Matlab programming and hence they are inaccessible for large parts of the research community. RESULTS: SCPS (Spectral Clustering of Protein Sequences) is an efficient and user-friendly implementation of a spectral method for inferring protein families. The method uses only pairwise sequence similarities, and is therefore practical when only sequence information is available. SCPS was tested on difficult sets of proteins whose relationships were extracted from the SCOP database, and its results were extensively compared with those obtained using other popular protein clustering algorithms such as TribeMCL, hierarchical clustering and connected component analysis. We show that SCPS is able to identify many of the family/superfamily relationships correctly and that the quality of the obtained clusters as indicated by their F-scores is consistently better than all the other methods we compared it with. We also demonstrate the scalability of SCPS by clustering the entire SCOP database (14,183 sequences) and the complete genome of the yeast Saccharomyces cerevisiae (6,690 sequences). CONCLUSIONS: Besides the spectral method, SCPS also implements connected component analysis and hierarchical clustering, it integrates TribeMCL, it provides different cluster quality tools, it can extract human-readable protein descriptions using GI numbers from NCBI, it interfaces with external tools such as BLAST and Cytoscape, and it can produce publication-quality graphical representations of the clusters obtained, thus constituting a comprehensive and effective tool for practical research in computational biology. Source code and precompiled executables for Windows, Linux and Mac OS X are freely available at http://www.paccanarolab.org/software/scps.


Assuntos
Genômica/métodos , Proteínas/química , Software , Sequência de Aminoácidos , Análise por Conglomerados , Bases de Dados de Proteínas , Genoma Fúngico , Reconhecimento Automatizado de Padrão , Saccharomyces cerevisiae/genética , Análise de Sequência de Proteína/métodos
12.
BMC Genomics ; 11: 383, 2010 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-20565764

RESUMO

BACKGROUND: Tiling arrays have been the tool of choice for probing an organism's transcriptome without prior assumptions about the transcribed regions, but RNA-Seq is becoming a viable alternative as the costs of sequencing continue to decrease. Understanding the relative merits of these technologies will help researchers select the appropriate technology for their needs. RESULTS: Here, we compare these two platforms using a matched sample of poly(A)-enriched RNA isolated from the second larval stage of C. elegans. We find that the raw signals from these two technologies are reasonably well correlated but that RNA-Seq outperforms tiling arrays in several respects, notably in exon boundary detection and dynamic range of expression. By exploring the accuracy of sequencing as a function of depth of coverage, we found that about 4 million reads are required to match the sensitivity of two tiling array replicates. The effects of cross-hybridization were analyzed using a "nearest neighbor" classifier applied to array probes; we describe a method for determining potential "black list" regions whose signals are unreliable. Finally, we propose a strategy for using RNA-Seq data as a gold standard set to calibrate tiling array data. All tiling array and RNA-Seq data sets have been submitted to the modENCODE Data Coordinating Center. CONCLUSIONS: Tiling arrays effectively detect transcript expression levels at a low cost for many species while RNA-Seq provides greater accuracy in several regards. Researchers will need to carefully select the technology appropriate to the biological investigations they are undertaking. It will also be important to reconsider a comparison such as ours as sequencing technologies continue to evolve.


Assuntos
Perfilação da Expressão Gênica/métodos , Análise de Sequência com Séries de Oligonucleotídeos/métodos , RNA/genética , Algoritmos , Animais , Composição de Bases , Caenorhabditis elegans/genética , Calibragem , Bases de Dados Genéticas , Éxons/genética , Hibridização de Ácido Nucleico , Pseudogenes/genética
14.
Nucleic Acids Res ; 32(Database issue): D193-5, 2004 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-14681392

RESUMO

Proteins can be formed by single or multiple domains. The process of recombination at the molecular level has generated a wide variety of multi-domain proteins with specific domain organization to cater to the functional requirements of an organism. The functional and structural costs of inserting a domain into another means that multi-domain proteins are usually formed by covalently linking the N-terminus of one domain to the C-terminus of the preceding domain. While this is true in a large proportion of multi-domain proteins, we find a significant fraction of proteins that are the result of domain insertion. The inserted domain breaks the sequence contiguity of the domain into which it is inserted leading to a novel domain organization. This web resource aims to document domain insertions in known protein structures that are classified in the SCOP database. The web server can be accessed from http://stash.mrc-lmb.cam. ac.uk/DomIns/.


Assuntos
Bases de Dados de Proteínas , Estrutura Terciária de Proteína , Proteínas/química , Recombinação Genética , Sequência de Aminoácidos , Animais , Biologia Computacional , Humanos , Armazenamento e Recuperação da Informação , Internet , Modelos Moleculares , Dados de Sequência Molecular
15.
Nat Cell Biol ; 18(6): 595-606, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27183470

RESUMO

Pluripotent stem cells (PSCs) may provide a potential source of haematopoietic stem/progenitor cells (HSPCs) for transplantation; however, unknown molecular barriers prevent the self-renewal of PSC-HSPCs. Using two-step differentiation, human embryonic stem cells (hESCs) differentiated in vitro into multipotent haematopoietic cells that had the CD34(+)CD38(-/lo)CD90(+)CD45(+)GPI-80(+) fetal liver (FL) HSPC immunophenotype, but exhibited poor expansion potential and engraftment ability. Transcriptome analysis of immunophenotypic hESC-HSPCs revealed that, despite their molecular resemblance to FL-HSPCs, medial HOXA genes remained suppressed. Knockdown of HOXA7 disrupted FL-HSPC function and caused transcriptome dysregulation that resembled hESC-derived progenitors. Overexpression of medial HOXA genes prolonged FL-HSPC maintenance but was insufficient to confer self-renewal to hESC-HSPCs. Stimulation of retinoic acid signalling during endothelial-to-haematopoietic transition induced the HOXA cluster and other HSC/definitive haemogenic endothelium genes, and prolonged HSPC maintenance in culture. Thus, medial HOXA gene expression induced by retinoic acid signalling marks the establishment of the definitive HSPC fate and controls HSPC identity and function.


Assuntos
Diferenciação Celular/fisiologia , Linhagem da Célula , Genes Homeobox/genética , Células-Tronco Hematopoéticas/citologia , Proteínas de Homeodomínio/metabolismo , Células-Tronco Multipotentes/citologia , Antígenos CD34/metabolismo , Células Cultivadas , Perfilação da Expressão Gênica/métodos , Proteínas de Homeodomínio/genética , Humanos , Antígenos Comuns de Leucócito/metabolismo , Transcriptoma
16.
J Mol Biol ; 338(4): 633-41, 2004 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-15099733

RESUMO

Domains are the structural, functional or evolutionary units of proteins. Proteins can comprise a single domain or a combination of domains. In multi-domain proteins, the domains almost always occur end-to-end, i.e., one domain follows the C-terminal end of another domain. However, there are exceptions to this common pattern, where multi-domain proteins are formed by insertion of one domain (insert) into another domain (parent). Here, we provide a quantitative description of known insertions in the Protein Data Bank (PDB). We found that 9% of domain combinations observed in non-redundant PDB are insertions. Although 90% of all insertions involve only one insert, proteins can clearly have multiple (nested, two-domain and three-domain) inserts. We also observed correlations between the structure and function of a domain and its tendency to be found as a parent or an insert. There is a bias in insert position towards the C terminus of parents. We observed that the atomic distance between the N and C terminus of an insert is significantly smaller when compared to the N-to-C distance in a parent context or a single domain context. Insertions are found always to occur in loop regions of parent domains. Our observations regarding the relationship between domain insertions and the structure, function and evolution of proteins have implications for protein engineering.


Assuntos
Sequência de Aminoácidos , Conformação Proteica , Bases de Dados de Proteínas , Evolução Molecular , Modelos Moleculares , Dados de Sequência Molecular
17.
Cell Stem Cell ; 16(1): 80-7, 2015 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-25465114

RESUMO

Advances in pluripotent stem cell and reprogramming technologies have given us the hope of generating hematopoietic stem cells (HSCs) in culture. To succeed, greater understanding of the self-renewing HSC during human development is required. We discovered that the glycophosphatidylinositol-anchored surface protein GPI-80 defines a subpopulation of human fetal liver hematopoietic stem/progenitor cells (HSPCs) with self-renewal ability. CD34(+)CD38(lo/-)CD90(+)GPI-80(+) HSPCs were the sole population that maintained proliferative potential and an undifferentiated state in stroma coculture and engrafted in immunodeficient mice. GPI-80 expression also enabled tracking of HSPCs once they emerged from endothelium and migrated between human fetal hematopoietic niches. GPI-80 colocalized on the surface of HSPCs with Integrin alpha-M (ITGAM), which in leukocytes cooperates with GPI-80 to support migration. Knockdown of GPI-80 or ITGAM was sufficient to compromise HSPC expansion in culture and engraftment in vivo. These findings indicate that human fetal HSCs employ mechanisms used in leukocyte adhesion and migration to mediate HSC self-renewal.


Assuntos
Amidoidrolases/metabolismo , Moléculas de Adesão Celular/metabolismo , Desenvolvimento Embrionário , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Antígeno CD11b/metabolismo , Diferenciação Celular , Linhagem da Célula , Proliferação de Células , Feto/citologia , Citometria de Fluxo , Proteínas Ligadas por GPI/metabolismo , Transplante de Células-Tronco Hematopoéticas , Humanos , Imunofenotipagem , Fígado/citologia , Fígado/embriologia
18.
PLoS One ; 8(1): e53912, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23342037

RESUMO

Lack of HLA-matched hematopoietic stem cells (HSC) limits the number of patients with life-threatening blood disorders that can be treated by HSC transplantation. So far, insufficient understanding of the regulatory mechanisms governing human HSC has precluded the development of effective protocols for culturing HSC for therapeutic use and molecular studies. We defined a culture system using OP9M2 mesenchymal stem cell (MSC) stroma that protects human hematopoietic stem/progenitor cells (HSPC) from differentiation and apoptosis. In addition, it facilitates a dramatic expansion of multipotent progenitors that retain the immunophenotype (CD34+CD38-CD90+) characteristic of human HSPC and proliferative potential over several weeks in culture. In contrast, transplantable HSC could be maintained, but not significantly expanded, during 2-week culture. Temporal analysis of the transcriptome of the ex vivo expanded CD34+CD38-CD90+ cells documented remarkable stability of most transcriptional regulators known to govern the undifferentiated HSC state. Nevertheless, it revealed dynamic fluctuations in transcriptional programs that associate with HSC behavior and may compromise HSC function, such as dysregulation of PBX1 regulated genetic networks. This culture system serves now as a platform for modeling human multilineage hematopoietic stem/progenitor cell hierarchy and studying the complex regulation of HSC identity and function required for successful ex vivo expansion of transplantable HSC.


Assuntos
Diferenciação Celular , Técnicas de Cocultura/métodos , Células-Tronco Hematopoéticas/citologia , Antígenos CD/metabolismo , Apoptose , Moléculas de Adesão Celular/metabolismo , Linhagem Celular , Linhagem da Célula , Proliferação de Células , Proteínas de Ligação a DNA/metabolismo , Regulação para Baixo , Perfilação da Expressão Gênica , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/metabolismo , Humanos , Fator de Transcrição 1 de Leucemia de Células Pré-B , Proteínas Proto-Oncogênicas/metabolismo , Células Estromais/citologia , Células Estromais/metabolismo
19.
Nat Commun ; 4: 1564, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23463007

RESUMO

Haematopoietic cells arise from spatiotemporally restricted domains in the developing embryo. Although studies of non-mammalian animal and in vitro embryonic stem cell models suggest a close relationship among cardiac, endocardial and haematopoietic lineages, it remains unknown whether the mammalian heart tube serves as a haemogenic organ akin to the dorsal aorta. Here we examine the haemogenic activity of the developing endocardium. Mouse heart explants generate myeloid and erythroid colonies in the absence of circulation. Haemogenic activity arises from a subset of endocardial cells in the outflow cushion and atria earlier than in the aorta-gonad-mesonephros region, and is transient and definitive in nature. Interestingly, key cardiac transcription factors, Nkx2-5 and Isl1, are expressed in and required for the haemogenic population of the endocardium. Together, these data suggest that a subset of endocardial/endothelial cells serve as a de novo source for transient definitive haematopoietic progenitors.


Assuntos
Endocárdio/fisiologia , Hematopoese/fisiologia , Animais , Endocárdio/citologia , Endocárdio/embriologia , Endocárdio/ultraestrutura , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Células Endoteliais/ultraestrutura , Células Eritroides/citologia , Imunofluorescência , Átrios do Coração/citologia , Átrios do Coração/ultraestrutura , Sistema Hematopoético/citologia , Sistema Hematopoético/fisiologia , Proteína Homeobox Nkx-2.5 , Proteínas de Homeodomínio/metabolismo , Proteínas com Homeodomínio LIM/metabolismo , Fígado/metabolismo , Camundongos , Células Mieloides/citologia , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Glicoproteína IIb da Membrana de Plaquetas/metabolismo , Fatores de Transcrição/metabolismo
20.
Dev Cell ; 27(4): 373-86, 2013 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-24286824

RESUMO

The placenta provides the interface for gas and nutrient exchange between the mother and the fetus. Despite its critical function in sustaining pregnancy, the stem/progenitor cell hierarchy and molecular mechanisms responsible for the development of the placental exchange interface are poorly understood. We identified an Epcam(hi) labyrinth trophoblast progenitor (LaTP) in mouse placenta that at a clonal level generates all labyrinth trophoblast subtypes, syncytiotrophoblasts I and II, and sinusoidal trophoblast giant cells. Moreover, we discovered that hepatocyte growth factor/c-Met signaling is required for sustaining proliferation of LaTP during midgestation. Loss of trophoblast c-Met also disrupted terminal differentiation and polarization of syncytiotrophoblasts, leading to intrauterine fetal growth restriction, fetal liver hypocellularity, and demise. Identification of this c-Met-dependent multipotent LaTP provides a landmark in the poorly defined placental stem/progenitor cell hierarchy and may help us understand pregnancy complications caused by a defective placental exchange.


Assuntos
Orelha Interna/citologia , Retardo do Crescimento Fetal/patologia , Troca Materno-Fetal , Placenta/citologia , Proteínas Proto-Oncogênicas c-met/metabolismo , Células-Tronco/citologia , Trofoblastos/citologia , Animais , Biomarcadores/metabolismo , Diferenciação Celular , Proliferação de Células , Orelha Interna/metabolismo , Feminino , Retardo do Crescimento Fetal/genética , Retardo do Crescimento Fetal/metabolismo , Imunofluorescência , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Fígado/metabolismo , Fígado/patologia , Camundongos , Análise de Sequência com Séries de Oligonucleotídeos , Placenta/metabolismo , Gravidez , Proteínas Proto-Oncogênicas c-met/genética , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais , Trofoblastos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA