Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Langmuir ; 34(30): 8758-8766, 2018 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-29969273

RESUMO

Paper-based microfluidic devices are rapidly becoming popular as a platform for developing point-of-care medical diagnostic tests. However, the design of these devices largely relies on trial and error, owing to a lack of proper understanding of fluid flow through porous membranes. Any porous material having pores of multiple sizes contains partially saturated regions, i.e., regions where less than 100% of the pores are filled with fluid. The capillary pressure and permeability of the material change as a function of the extent of saturation. Although methods to measure these relationships have been developed in other fields of study, these methods have not yet been adapted for paper for use by the larger community of analytical chemists. In the current work, we present a set of experimental methods that can be used to measure the relationships between capillary pressure, permeability, and saturation for any commercially available paper membrane. These experiments can be performed using commonly available lab instruments. We further demonstrate the use of the Richards equation in modeling imbibition into two-dimensional paper networks, thus adding new capability to the field. Predictions of spatiotemporal saturation from the model were in strong agreement with experimental measurements. To make these methods readily accessible to a wide community of chemists, biologists, and clinicians, we present the first report of a simple protocol to measure the flow rates considering the effect of partial saturation. Use of this protocol could drastically reduce the trial and error involved in designing paper-based microfluidic devices.

3.
Anal Methods ; 2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-39315859

RESUMO

The lateral flow immunoassay (LFIA) is widely adopted for point-of-care testing, but its limit of detection (LoD) falls short of that of laboratory-based immunoassays. Several techniques have been proposed to enhance the LoD of LFIAs using visual colorimetric readouts, yet a direct comparison of the LoDs achieved by these techniques has not been performed. In this work, we measure the LoDs of LFIAs designed for the detection of a malaria protein, PfHRP2, using four different colorimetric signal generation techniques: (i) AuNP(40 nm)-tagged detection antibodies (base case), (ii) AuNP-based enhancement of AuNP(40 nm) signal, (iii) oxidation of chloronaphthol/diaminobenzidine (CN/DAB) using HRP-tagged detection antibodies, and (iv) oxidation of CN/DAB using polyHRP(400)-tagged detection antibodies. The LoDs and the 95% confidence intervals of the LoDs achieved by the 4 techniques were 19.34 (13.37-27.62) ng mL-1, 9.57 (6.76-13.28) ng mL-1, 21.57 (14.26-32.18) ng mL-1, and 6.09 (2.23-13.47) ng mL-1, respectively. Contrary to popular perception, enzymatic signal generation using HRP-tagged detection antibodies did not improve the LoD compared to the base case of AuNP-based signal generation. Further studies revealed that the very high extinction coefficient of gold nanoparticles renders them an excellent choice for colorimetric detection, surpassing the performance of enzymatic signal generation using HRP-tagged antibodies. However, enzymatic signal generation using polyHRP-tagged antibodies improved the LoD compared to the base case. These results show that enzymatic signal amplification should not be a priori assumed to be superior to AuNP-based signal generation; and provide a reference point to LFIA developers to select an appropriate signal generation modality.

4.
Sci Rep ; 14(1): 15553, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38969728

RESUMO

This article proposes a dual mode dual-polarized antenna configuration for IRNSS and fifth generation (5G) applications, operating at a frequency of 3.5 GHz based on characteristic mode analysis (CMA), and aims to provide broadband dual-polarized functionality. The original design of the antenna is a traditional patch antenna, and its dual-polarized features are determined using characteristic mode analysis. The full-wave method is used to stimulate both orthogonal modes using a 50 Ω coaxial input line at 3.5 GHz. In this design, the circular patch has been extended into an elliptical patch through a process of mode separation. The circular patch exhibits resonance at a frequency of 2.5 GHz, whereas the extended elliptical radiator demonstrates two resonance modes at 2.5 GHz and 3.5 GHz. The operational mechanism is elucidated by modal analysis and characteristic angle. This antenna operates on two different frequencies at the 2.5 GHz IRNSS band with horizontal polarization and the 3.5 GHz 5G service with vertical polarization. The maximum gain achieved with these frequency ranges is 5.31 dBi and 4.72 dBi, respectively. A ring resonator is chosen to improve the axial ratio and impedance bandwidth of the suggested prototype. The antenna's ground plane is shaped like a rectangle and features a V-shaped slot in the radiating patch. The antenna's physical footprint is 50 mm × 50 mm × 1.6 mm and an FR4 dielectric substrate serves as its foundation. Through its interaction with a PIN diode, the diode modifies the polarization of the antenna. The antenna functions as a right-handed circular polarization (RHCP), when the diode is operational. The bandwidth from 4.3 to 7.5 GHz is covered. On the other hand, it generates linear polarization (LP) between 4.2 and 5.3 GHz. The experimental antenna is evaluated and examined for its performance characteristics. The simulations are carried out utilizing the CST simulator. A prototype antenna has been manufactured and its performance has been validated against simulated findings.

5.
Heliyon ; 10(17): e36929, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39281493

RESUMO

Antennas with higher gain and efficiency deliver superior performance across a wide frequency range. Achieving these characteristics at high frequencies while keeping a compact size necessitates sophisticated design approaches. This research presents a substrate-integrated waveguide (SIW) cavity-backed slotted patch antenna (SPA) tailored for the 28 GHz and 34 GHz frequency bands. Additionally, a linear tapered slot antenna is designed with a compact profile of 27.5 mm × 7.5 mm × 0.254 mm. The SIWs are implemented using vias on the outer profile of the antenna, and circular and rectangular slots are etched on the radiating surface. The goal of optimizing the antenna geometry is to enhance return loss within the desired frequency bandwidth, which means the Genetic Algorithm (GA) will determine the optimal antenna shape to achieve lower return loss than the original design within this bandwidth. The antenna exhibits dual resonance at 28 GHz and 38 GHz in the millimeter-wave range, providing an impedance bandwidth of 211 MHz (27.72 GHz-27.94 GHz) at 28 GHz and 127 MHz (37.88 GHz-37.98 GHz) centered at 38 GHz. The proposed antenna demonstrates gains of 8.04 dBi and 9.72 dBi at these operating bands. A prototype of the antenna is fabricated on RT/duroid 5880 and its characteristics are measured. The overall VSWR of the antenna ranges from 1 to 2, with a radiation efficiency of 94 %. The proposed antenna achieves dual-band performance with increased directivity and stable gain, exhibiting enhanced electric field distribution, radiation patterns, and reflection coefficient (S11), all of which contribute to a comprehensive understanding of the antenna's performance. This study compares the designed antenna's performance to that of the fabricated prototype. The proposed antenna is ideal for 5G applications due to its small size, broad spectral coverage, and excellent gain.

6.
Lab Chip ; 24(1): 63-73, 2023 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-37987330

RESUMO

There is great enthusiasm for using loop-mediated isothermal amplification (LAMP) in point-of-care nucleic acid amplification tests (POC NAATs), as an alternative to PCR. While isothermal amplification techniques like LAMP eliminate the need for rapid temperature cycling in a portable format, these systems are still plagued by requirements for dedicated optical detection apparatus for analysis and manual off-chip sample processing. Here, we developed a new microfluidic system for LAMP-based POC NAATs to address these limitations. The new system combines digital microfluidics (DMF) with distance-based detection (DBD) for direct signal readout. This is the first report of the use of (i) LAMP or (ii) DMF with DBD - thus, we describe a number of characterization steps taken to determine optimal combinations of reagents, materials, and processes for reliable operation. For example, DBD was found to be quite sensitive to background signals from low molecular weight LAMP products; thus, a Capto™ adhere bead-based clean-up procedure was developed to isolate the desirable high-molecular-weight products for analysis. The new method was validated by application to detection of SARS-CoV-2 in saliva. The method was able to distinguish between saliva containing no virus, saliva containing a low viral load (104 genome copies per mL), and saliva containing a high viral load (108 copies per mL), all in an automated system that does not require detection apparatus for analysis. We propose that the combination of DMF with distance-based detection may be a powerful one for implementing a variety of POC NAATs or for other applications in the future.


Assuntos
Microfluídica , Ácidos Nucleicos , Técnicas de Amplificação de Ácido Nucleico , Reação em Cadeia da Polimerase , Sistemas Automatizados de Assistência Junto ao Leito , Testes Imediatos , Técnicas de Diagnóstico Molecular/métodos
7.
Prog Mol Biol Transl Sci ; 186(1): 267-288, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35033288

RESUMO

Over the past decade, paper-based microfluidic devices have become popular for their simplicity and ability to conduct diagnostic tests at a low cost. An important class of diagnostic assays that paper-based analytical devices have been used for is immunoassays. The lateral flow immunoassay (LFIA), of which the home pregnancy test is the most prominent example, has been one of the most commercially successful membrane-based diagnostic tests. Yet, the analytical sensitivity of LFIAs is lower than the corresponding laboratory technique called ELISA (enzyme-linked immunoassay). As a consequence, traditional LFIAs fail to deliver on the promise of bedside diagnostic testing for many applications. Recognizing this shortcoming, several new developments have been made by researchers to enhance the sensitivity of membrane-based immunoassays. In this chapter, we present the various strategies that have been employed to this end. In the end, we present a brief SWOT analysis to guide future work in this area.


Assuntos
Microfluídica , Humanos , Imunoensaio
8.
Adv Biomed Res ; 9: 48, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33457331

RESUMO

BACKGROUND: Chronic alcohol consumption carries a high risk for oral and pharyngeal cancers among persons who have never smoked. Excessive alcohol consumption displays cytogenetic changes in oral mucosa cells. Cytomorphometric analysis of oral mucosal cells helps in the early detection of cytomorphological transformations in alcoholics before and after the onset of carcinoma. MATERIALS AND METHODS: A prospective, hospital-based, comparative study was done after written informed consent. Smears were obtained from the clinically normal buccal mucosa of 102 randomly selected alcoholic patients attending the medicine outpatient department aged above 25 years who consumed a minimum of 45 ml alcohol per day for at least 10 years and of 102 nonalcoholics as control. The slides were immediately fixed in absolute methanol and stained by the Papanicolaou (Pap) staining technique. PAP-stained smears were examined under the light microscope. Using the image J 1.47 image analysis software, a morphometric analysis of around 50 cells/case was done. RESULTS: A statistically significant increase in mean cytoplasmic area (P < 0.001), mean nuclear area (P < 0.01), and cell-to-nuclear parameter ratio (P < 0.001) was seen in the alcohol group in comparison with the control group. CONCLUSION: Prolonged consumption of alcohol produces cytomorphometric changes in buccal mucosal cells before the onset of premalignant lesions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA