Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
EBioMedicine ; 93: 104663, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37379657

RESUMO

BACKGROUND: HexaBody®-CD38 (GEN3014) is a hexamerization-enhanced human IgG1 that binds CD38 with high affinity. The E430G mutation in its Fc domain facilitates the natural process of antibody hexamer formation upon binding to the cell surface, resulting in increased binding of C1q and potentiated complement-dependent cytotoxicity (CDC). METHODS: Co-crystallization studies were performed to identify the binding interface of HexaBody-CD38 and CD38. HexaBody-CD38-induced CDC, antibody-dependent cellular cytotoxicity (ADCC), antibody-dependent cellular phagocytosis (ADCP), trogocytosis, and apoptosis were assessed using flow cytometry assays using tumour cell lines, and MM patient samples (CDC). CD38 enzymatic activity was measured using fluorescence spectroscopy. Anti-tumour activity of HexaBody-CD38 was assessed in patient-derived xenograft mouse models in vivo. FINDINGS: HexaBody-CD38 binds a unique epitope on CD38 and induced potent CDC in multiple myeloma (MM), acute myeloid leukaemia (AML), and B-cell non-Hodgkin lymphoma (B-NHL) cells. Anti-tumour activity was confirmed in patient-derived xenograft models in vivo. Sensitivity to HexaBody-CD38 correlated with CD38 expression level and was inversely correlated with expression of complement regulatory proteins. Compared to daratumumab, HexaBody-CD38 showed enhanced CDC in cell lines with lower levels of CD38 expression, without increasing lysis of healthy leukocytes. More effective CDC was also confirmed in primary MM cells. Furthermore, HexaBody-CD38 efficiently induced ADCC, ADCP, trogocytosis, and apoptosis after Fc-crosslinking. Moreover, HexaBody-CD38 strongly inhibited CD38 cyclase activity, which is hypothesized to relieve immune suppression in the tumour microenvironment. INTERPRETATION: Based on these preclinical studies, a clinical trial was initiated to assess the clinical safety of HexaBody-CD38 in patients with MM. FUNDING: Genmab.


Assuntos
Antineoplásicos , Mieloma Múltiplo , Humanos , Animais , Camundongos , ADP-Ribosil Ciclase 1/genética , ADP-Ribosil Ciclase 1/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/genética , Citotoxicidade Celular Dependente de Anticorpos , Linhagem Celular Tumoral , Proteínas do Sistema Complemento/metabolismo , Microambiente Tumoral
2.
Life Sci Alliance ; 5(11)2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36271507

RESUMO

CD3 bispecific antibodies (bsAbs) show great promise as anticancer therapeutics. Here, we show in-depth mechanistic studies of a CD3 bsAb in solid cancer, using DuoBody-CD3x5T4. Cross-linking T cells with tumor cells expressing the oncofetal antigen 5T4 was required to induce cytotoxicity. Naive and memory CD4+ and CD8+ T cells were equally effective at mediating cytotoxicity, and DuoBody-CD3x5T4 induced partial differentiation of naive T-cell subsets into memory-like cells. Tumor cell kill was associated with T-cell activation, proliferation, and production of cytokines, granzyme B, and perforin. Genetic knockout of FAS or IFNGR1 in 5T4+ tumor cells abrogated tumor cell kill. In the presence of 5T4+ tumor cells, bystander kill of 5T4- but not of 5T4-IFNGR1- tumor cells was observed. In humanized xenograft models, DuoBody-CD3x5T4 antitumor activity was associated with intratumoral and peripheral blood T-cell activation. Lastly, in dissociated patient-derived tumor samples, DuoBody-CD3x5T4 activated tumor-infiltrating lymphocytes and induced tumor-cell cytotoxicity, even when most tumor-infiltrating lymphocytes expressed PD-1. These data provide an in-depth view on the mechanism of action of a CD3 bsAb in preclinical models of solid cancer.


Assuntos
Anticorpos Biespecíficos , Neoplasias , Humanos , Anticorpos Biespecíficos/farmacologia , Linfócitos T CD8-Positivos , Granzimas/farmacologia , Complexo CD3/farmacologia , Citotoxicidade Imunológica , Perforina/farmacologia , Receptor de Morte Celular Programada 1 , Neoplasias/tratamento farmacológico , Citocinas
3.
J Immunother Cancer ; 10(6)2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35688554

RESUMO

BACKGROUND: Despite the preclinical promise of CD40 and 4-1BB as immuno-oncology targets, clinical efforts evaluating CD40 and 4-1BB agonists as monotherapy have found limited success. DuoBody-CD40×4-1BB (GEN1042/BNT312) is a novel investigational Fc-inert bispecific antibody for dual targeting and conditional stimulation of CD40 and 4-1BB to enhance priming and reactivation of tumor-specific immunity in patients with cancer. METHODS: Characterization of DuoBody-CD40×4-1BB in vitro was performed in a broad range of functional immune cell assays, including cell-based reporter assays, T-cell proliferation assays, mixed-lymphocyte reactions and tumor-infiltrating lymphocyte assays, as well as live-cell imaging. The in vivo activity of DuoBody-CD40×4-1BB was assessed in blood samples from patients with advanced solid tumors that were treated with DuoBody-CD40×4-1BB in the dose-escalation phase of the first-in-human clinical trial (NCT04083599). RESULTS: DuoBody-CD40×4-1BB exhibited conditional CD40 and 4-1BB agonist activity that was strictly dependent on crosslinking of both targets. Thereby, DuoBody-CD40×4-1BB strengthened the dendritic cell (DC)/T-cell immunological synapse, induced DC maturation, enhanced T-cell proliferation and effector functions in vitro and enhanced expansion of patient-derived tumor-infiltrating lymphocytes ex vivo. The addition of PD-1 blocking antibodies resulted in potentiation of T-cell activation and effector functions in vitro compared with either monotherapy, providing combination rationale. Furthermore, in a first-in-human clinical trial, DuoBody-CD40×4-1BB mediated clear immune modulation of peripheral antigen presenting cells and T cells in patients with advanced solid tumors. CONCLUSION: DuoBody-CD40×4-1BB is capable of enhancing antitumor immunity by modulating DC and T-cell functions and shows biological activity in patients with advanced solid tumors. These findings demonstrate that targeting of these two pathways with an Fc-inert bispecific antibody may be an efficacious approach to (re)activate tumor-specific immunity and support the clinical investigation of DuoBody-CD40×4-1BB for the treatment of cancer.


Assuntos
Anticorpos Biespecíficos , Neoplasias , Anticorpos Biespecíficos/farmacologia , Anticorpos Biespecíficos/uso terapêutico , Antígenos CD40/metabolismo , Ensaios Clínicos como Assunto , Humanos , Ativação Linfocitária , Neoplasias/terapia , Linfócitos T
4.
Oncoimmunology ; 11(1): 2030135, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35186440

RESUMO

Immune checkpoint inhibitors (ICI) targeting the PD-1/PD-L1 axis have changed the treatment paradigm for advanced solid tumors; however, many patients experience treatment resistance. In preclinical models 4-1BB co-stimulation synergizes with ICI by activating cytotoxic T- and NK-cell-mediated anti-tumor immunity. Here we characterize the mechanism of action of a mouse-reactive Fc-inert PD-L1×4-1BB bispecific antibody (mbsAb-PD-L1×4-1BB) and provide proof-of-concept for enhanced anti-tumor activity. In reporter assays mbsAb-PD-L1×4-1BB exhibited conditional 4-1BB agonist activity that was dependent on simultaneous binding to PD-L1. mbsAb-PD-L1×4-1BB further blocked the PD-L1/PD-1 interaction independently of 4-1BB binding. By combining both mechanisms, mbsAb-PD-L1×4-1BB strongly enhanced T-cell proliferation, cytokine production and antigen-specific cytotoxicity using primary mouse cells in vitro. Furthermore, mbsAb-PD-L1×4-1BB exhibited potent anti-tumor activity in the CT26 and MC38 models in vivo, leading to the rejection of CT26 tumors that were unresponsive to PD-L1 blockade alone. Anti-tumor activity was associated with increased tumor-specific CD8+ T cells and reduced regulatory T cells within the tumor microenvironment and tumor-draining lymph nodes. In immunocompetent tumor-free mice, mbsAb-PD-L1×4-1BB treatment neither induced T-cell infiltration into the liver nor elevated liver enzymes in the blood. Dual targeting of PD-L1 and 4-1BB with a bispecific antibody may therefore address key limitations of first generation 4-1BB-agonistic antibodies, and may provide a novel approach to improve PD-1/PD-L1 checkpoint blockade.


Assuntos
Anticorpos Biespecíficos , Neoplasias , Animais , Anticorpos Biespecíficos/farmacologia , Anticorpos Biespecíficos/uso terapêutico , Antígeno B7-H1 , Linfócitos T CD8-Positivos , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Camundongos , Neoplasias/tratamento farmacológico , Receptor de Morte Celular Programada 1/uso terapêutico , Microambiente Tumoral
5.
Cancer Discov ; 12(5): 1248-1265, 2022 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-35176764

RESUMO

Checkpoint inhibitors (CPI) have revolutionized the treatment paradigm for advanced solid tumors; however, there remains an opportunity to improve response rates and outcomes. In preclinical models, 4-1BB costimulation synergizes with CPIs targeting the programmed cell death protein 1 (PD-1)/programmed cell death ligand 1 (PD-L1) axis by activating cytotoxic T-cell-mediated antitumor immunity. DuoBody-PD-L1×4-1BB (GEN1046) is an investigational, first-in-class bispecific immunotherapy agent designed to act on both pathways by combining simultaneous and complementary PD-L1 blockade and conditional 4-1BB stimulation in one molecule. GEN1046 induced T-cell proliferation, cytokine production, and antigen-specific T-cell-mediated cytotoxicity superior to clinically approved PD-(L)1 antibodies in human T-cell cultures and exerted potent antitumor activity in transplantable mouse tumor models. In dose escalation of the ongoing first-in-human study in heavily pretreated patients with advanced refractory solid tumors (NCT03917381), GEN1046 demonstrated pharmacodynamic immune effects in peripheral blood consistent with its mechanism of action, manageable safety, and early clinical activity [disease control rate: 65.6% (40/61)], including patients resistant to prior PD-(L)1 immunotherapy. SIGNIFICANCE: DuoBody-PD-L1×4-1BB (GEN1046) is a first-in-class bispecific immunotherapy with a manageable safety profile and encouraging preclinical and early clinical activity. With its ability to confer clinical benefit in tumors typically less sensitive to CPIs, GEN1046 may fill a clinical gap in CPI-relapsed or refractory disease or as a combination therapy with CPIs. See related commentary by Li et al., p. 1184. This article is highlighted in the In This Issue feature, p. 1171.


Assuntos
Anticorpos Biespecíficos , Neoplasias , Animais , Anticorpos Biespecíficos/farmacologia , Anticorpos Biespecíficos/uso terapêutico , Antígeno B7-H1 , Modelos Animais de Doenças , Humanos , Imunoterapia/métodos , Camundongos , Neoplasias/tratamento farmacológico , Linfócitos T
6.
Nat Med ; 24(2): 203-212, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29334371

RESUMO

Intratumor heterogeneity is a key factor contributing to therapeutic failure and, hence, cancer lethality. Heterogeneous tumors show partial therapy responses, allowing for the emergence of drug-resistant clones that often express high levels of the receptor tyrosine kinase AXL. In melanoma, AXL-high cells are resistant to MAPK pathway inhibitors, whereas AXL-low cells are sensitive to these inhibitors, rationalizing a differential therapeutic approach. We developed an antibody-drug conjugate, AXL-107-MMAE, comprising a human AXL antibody linked to the microtubule-disrupting agent monomethyl auristatin E. We found that AXL-107-MMAE, as a single agent, displayed potent in vivo anti-tumor activity in patient-derived xenografts, including melanoma, lung, pancreas and cervical cancer. By eliminating distinct populations in heterogeneous melanoma cell pools, AXL-107-MMAE and MAPK pathway inhibitors cooperatively inhibited tumor growth. Furthermore, by inducing AXL transcription, BRAF/MEK inhibitors potentiated the efficacy of AXL-107-MMAE. These findings provide proof of concept for the premise that rationalized combinatorial targeting of distinct populations in heterogeneous tumors may improve therapeutic effect, and merit clinical validation of AXL-107-MMAE in both treatment-naive and drug-resistant cancers in mono- or combination therapy.


Assuntos
Imunoconjugados/farmacologia , Melanoma/tratamento farmacológico , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas/imunologia , Receptores Proteína Tirosina Quinases/imunologia , Animais , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/imunologia , Heterogeneidade Genética/efeitos dos fármacos , Humanos , Imunoconjugados/imunologia , Melanoma/genética , Melanoma/imunologia , Melanoma/patologia , Camundongos , Oligopeptídeos/química , Oligopeptídeos/imunologia , Oligopeptídeos/farmacologia , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/imunologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas/química , Proteínas Proto-Oncogênicas/farmacologia , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Proteínas Proto-Oncogênicas B-raf/imunologia , Receptores Proteína Tirosina Quinases/química , Receptores Proteína Tirosina Quinases/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto , Receptor Tirosina Quinase Axl
7.
Nat Biotechnol ; 21(5): 553-8, 2003 May.
Artigo em Inglês | MEDLINE | ID: mdl-12679786

RESUMO

The expression of transgenic proteins is often low and unstable over time, a problem that may be due to integration of the transgene in repressed chromatin. We developed a screening technology to identify genetic elements that efficiently counteract chromatin-associated repression. When these elements were used to flank a transgene, we observed a substantial increase in the number of mammalian cell colonies that expressed the transgenic protein. Expression of the shielded transgene was, in a copy number-dependent fashion, substantially higher than the expression of unprotected transgenes. Also, protein production remained stable over an extended time period. The DNA elements are small, not exceeding 2,100 base pairs (bp), and they are highly conserved between human and mouse, at both the functional and sequence levels. Our results demonstrate the existence of a class of genetic elements that can readily be applied to more efficient transgenic protein production in mammalian cells.


Assuntos
Cromatina/genética , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica/genética , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Proteínas Repressoras/genética , Transgenes/genética , Animais , Células CHO , Cromatina/metabolismo , Cricetinae , Cricetulus , Humanos , Mamíferos , Dados de Sequência Molecular , Regiões Promotoras Genéticas , Biossíntese de Proteínas , Engenharia de Proteínas/métodos , Proteínas/genética , Proteínas Repressoras/metabolismo
8.
Mol Cancer Ther ; 15(11): 2688-2697, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27559142

RESUMO

Antibody-drug conjugates (ADC) are designed to be stable in circulation and to release potent cytotoxic drugs intracellularly following antigen-specific binding, uptake, and degradation in tumor cells. Efficient internalization and routing to lysosomes where proteolysis can take place is therefore essential. For many cell surface proteins and carbohydrate structures on tumor cells, however, the magnitude of these processes is insufficient to allow for an effective ADC approach. We hypothesized that we could overcome this limitation by enhancing lysosomal ADC delivery via a bispecific antibody (bsAb) approach, in which one binding domain would provide tumor specificity, whereas the other binding domain would facilitate targeting to the lysosomal compartment. We therefore designed a bsAb in which one binding arm specifically targeted CD63, a protein that is described to shuttle between the plasma membrane and intracellular compartments, and combined it in a bsAb with a HER2 binding arm, which was selected as model antigen for tumor-specific binding. The resulting bsHER2xCD63his demonstrated strong binding, internalization and lysosomal accumulation in HER2-positive tumor cells, and minimal internalization into HER2-negative cells. By conjugating bsHER2xCD63his to the microtubule-disrupting agent duostatin-3, we were able to demonstrate potent cytotoxicity of bsHER2xCD63his-ADC against HER2-positive tumors, which was not observed with monovalent HER2- and CD63-specific ADCs. Our data demonstrate, for the first time, that intracellular trafficking of ADCs can be improved using a bsAb approach that targets the lysosomal membrane protein CD63 and provide a rationale for the development of novel bsADCs that combine tumor-specific targeting with targeting of rapidly internalizing antigens. Mol Cancer Ther; 15(11); 2688-97. ©2016 AACR.


Assuntos
Anticorpos Biespecíficos/administração & dosagem , Antineoplásicos/administração & dosagem , Imunoconjugados/administração & dosagem , Receptor ErbB-2/antagonistas & inibidores , Tetraspanina 30/antagonistas & inibidores , Animais , Anticorpos Biespecíficos/imunologia , Anticorpos Biespecíficos/farmacocinética , Afinidade de Anticorpos/imunologia , Antineoplásicos/farmacocinética , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Liberação Controlada de Fármacos , Feminino , Humanos , Imunoconjugados/farmacocinética , Fragmentos Fab das Imunoglobulinas/imunologia , Fragmentos Fab das Imunoglobulinas/metabolismo , Lisossomos/metabolismo , Camundongos , Terapia de Alvo Molecular , Ligação Proteica , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Mol Cancer Ther ; 14(5): 1130-40, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25724665

RESUMO

Antibody-drug conjugates (ADC) are emerging as powerful cancer treatments that combine antibody-mediated tumor targeting with the potent cytotoxic activity of toxins. We recently reported the development of a novel ADC that delivers the cytotoxic payload monomethyl auristatin E (MMAE) to tumor cells expressing tissue factor (TF). By carefully selecting a TF-specific antibody that interferes with TF:FVIIa-dependent intracellular signaling, but not with the procoagulant activity of TF, an ADC was developed (TF-011-MMAE/HuMax-TF-ADC) that efficiently kills tumor cells, with an acceptable toxicology profile. To gain more insight in the efficacy of TF-directed ADC treatment, we compared the internalization characteristics and intracellular routing of TF with the EGFR and HER2. Both in absence and presence of antibody, TF demonstrated more efficient internalization, lysosomal targeting, and degradation than EGFR and HER2. By conjugating TF, EGFR, and HER2-specific antibodies with duostatin-3, a toxin that induces potent cytotoxicity upon antibody-mediated internalization but lacks the ability to induce bystander killing, we were able to compare cytotoxicity of ADCs with different tumor specificities. TF-ADC demonstrated effective killing against tumor cell lines with variable levels of target expression. In xenograft models, TF-ADC was relatively potent in reducing tumor growth compared with EGFR- and HER2-ADCs. We hypothesize that the constant turnover of TF on tumor cells makes this protein specifically suitable for an ADC approach.


Assuntos
Antineoplásicos/administração & dosagem , Receptores ErbB/metabolismo , Fator VIIa/metabolismo , Imunotoxinas/administração & dosagem , Neoplasias Experimentais/tratamento farmacológico , Animais , Anticorpos , Antineoplásicos/farmacocinética , Apoptose , Linhagem Celular Tumoral , Sistemas de Liberação de Medicamentos , Receptores ErbB/imunologia , Fator VIIa/imunologia , Humanos , Imunotoxinas/farmacocinética , Lisossomos/metabolismo , Camundongos , Neoplasias Experimentais/metabolismo , Receptor ErbB-2/imunologia , Receptor ErbB-2/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Cancer Res ; 74(4): 1214-26, 2014 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-24371232

RESUMO

Tissue factor (TF) is aberrantly expressed in solid cancers and is thought to contribute to disease progression through its procoagulant activity and its capacity to induce intracellular signaling in complex with factor VIIa (FVIIa). To explore the possibility of using tissue factor as a target for an antibody-drug conjugate (ADC), a panel of human tissue factor-specific antibodies (TF HuMab) was generated. Three tissue factor HuMab, that induced efficient inhibition of TF:FVIIa-dependent intracellular signaling, antibody-dependent cell-mediated cytotoxicity, and rapid target internalization, but had minimal impact on tissue factor procoagulant activity in vitro, were conjugated with the cytotoxic agents monomethyl auristatin E (MMAE) or monomethyl auristatin F (MMAF). Tissue factor-specific ADCs showed potent cytotoxicity in vitro and in vivo, which was dependent on tissue factor expression. TF-011-MMAE (HuMax-TF-ADC) was the most potent ADC, and the dominant mechanism of action in vivo was auristatin-mediated tumor cell killing. Importantly, TF-011-MMAE showed excellent antitumor activity in patient-derived xenograft (PDX) models with variable levels of tissue factor expression, derived from seven different solid cancers. Complete tumor regression was observed in all PDX models, including models that showed tissue factor expression in only 25% to 50% of the tumor cells. In conclusion, TF-011-MMAE is a promising novel antitumor agent with potent activity in xenograft models that represent the heterogeneity of human tumors, including heterogeneous target expression.


Assuntos
Aminobenzoatos/uso terapêutico , Antineoplásicos/uso terapêutico , Imunoconjugados/uso terapêutico , Neoplasias/tratamento farmacológico , Oligopeptídeos/uso terapêutico , Tromboplastina/imunologia , Animais , Anticorpos Monoclonais/uso terapêutico , Células Cultivadas , Células HCT116 , Células HEK293 , Humanos , Camundongos , Camundongos Nus , Terapia de Alvo Molecular , Tromboplastina/antagonistas & inibidores , Ensaios Antitumorais Modelo de Xenoenxerto
11.
J Immunol ; 181(1): 669-79, 2008 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-18566434

RESUMO

IL-8 is a chemokine that has been implicated in a number of inflammatory diseases involving neutrophil activation. HuMab 10F8 is a novel fully human mAb against IL-8, which binds a discontinuous epitope on IL-8 overlapping the receptor binding site, and which effectively neutralizes IL-8-dependent human neutrophil activation and migration. We investigated whether interference in the cytokine network by HuMab 10F8 might benefit patients suffering from palmoplantar pustulosis, a chronic inflammatory skin disease. Treatment of patients with HuMab 10F8 was well tolerated and significantly reduced clinical disease activity at all five endpoints, which included a >or=50% reduction in the formation of fresh pustules. IL-8 neutralization was monitored at the site of inflammation by assessing exudates of palmoplantar pustulosis lesions. HuMab 10F8 sequestered IL-8 in situ, as observed by rapid dose-dependent decreases of IL-8 concentrations immediately following Ab infusion. These data demonstrate a critical role for IL-8 in the pathophysiology of palmoplantar pustulosis. HuMab 10F8 is capable of interrupting IL-8 activity in vivo and represents a candidate for treatment of inflammatory diseases and other pathological conditions associated with IL-8 overproduction.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/uso terapêutico , Interleucina-8/imunologia , Psoríase/tratamento farmacológico , Psoríase/imunologia , Sequência de Aminoácidos , Animais , Anticorpos Monoclonais/efeitos adversos , Anticorpos Monoclonais/sangue , Células Cultivadas , Epitopos/química , Epitopos/imunologia , Humanos , Tolerância Imunológica/imunologia , Imunoterapia , Inflamação/tratamento farmacológico , Inflamação/imunologia , Inflamação/patologia , Interleucina-8/química , Camundongos , Camundongos Transgênicos , Modelos Moleculares , Dados de Sequência Molecular , Neutrófilos/imunologia , Ligação Proteica , Estrutura Terciária de Proteína , Psoríase/patologia , Fatores de Tempo
12.
Hybrid Hybridomics ; 21(4): 245-52, 2002 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12193277

RESUMO

Polycomb-group (PcG) proteins are chromatin-associated proteins that heritably repress gene activity in many organisms, including man. Two distinct human PcG complexes have been identified. The HPC/HPH PcG complex I contains the HPC, HPH, RING1, and BMI1 proteins, the EED/EZH2 PcG complex II contains the EED, EZH2, and YY1 proteins. Previously we found that the relative expression levels of proteins of the human PcG complexes I and II are severely deregulated in human tumors. These findings signify an important role for antibodies against human PcG proteins as diagnostic tools. To be able to produce standardized anti-human PcG antibodies, we developed a panel of five mouse monoclonal antibodies (MAbs) against the human PcG proteins HPC2, BMI1, RING1A, EED, and EZH2. All MAbs can be used for Western blot analysis and immunofluorescence labeling of tissue culture cells. With the exception of the MAb against HPC2, all MAbs can also be used in immunoprecipitation experiments and immunohistochemistry of human tissues. The novel MAbs are therefore valuable tools for the cell biological, biochemical, and pathological analysis of human PcG proteins.


Assuntos
Anticorpos Monoclonais , Proteínas Repressoras/imunologia , Animais , Western Blotting , Proteínas de Transporte/imunologia , Linhagem Celular , Proteínas de Ligação a DNA/imunologia , Proteína Potenciadora do Homólogo 2 de Zeste , Imunofluorescência , Células HL-60 , Histona-Lisina N-Metiltransferase , Humanos , Hibridomas/imunologia , Imuno-Histoquímica , Ligases , Camundongos , Camundongos Endogâmicos BALB C , Proteínas Nucleares/imunologia , Complexo Repressor Polycomb 1 , Complexo Repressor Polycomb 2 , Proteínas do Grupo Polycomb , Testes de Precipitina , Proteínas/imunologia , Proteínas Proto-Oncogênicas/imunologia , Fatores de Transcrição , Ubiquitina-Proteína Ligases
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA