RESUMO
Tensile mechanical properties of fully recrystallized TWIP steel specimens having various grain sizes (d) ranging from 0.79 µm to 85.6 µm were investigated. It was confirmed that the UFG specimens having the mean grain sizes of 1.5 µm or smaller abnormally showed discontinuous yielding characterized by a clear yield-drop while the specimens having grain sizes larger than 2.4 µm showed normal continuous yielding. In-situ synchrotron radiation XRD showed dislocation density around yield-drop in the UFG specimen quickly increased. ECCI observations revealed the nucleation of deformation twins and stacking faults from grain boundaries in the UFG specimen around yielding. Although it had been conventionally reported that the grain refinement suppresses deformation twinning in FCC metals and alloys, the number density of deformation twins in the 0.79 µm grain-sized specimen was much higher than that in the specimens with grain sizes of 4.5 µm and 15.4 µm. The unusual change of yielding behavior from continuous to discontinuous manner by grain refinement could be understood on the basis of limited number of free dislocations in each ultrafine grain. The results indicated that the scarcity of free dislocations in the recrystallized UFG specimens changed the deformation and twinning mechanisms in the TWIP steel.
RESUMO
Hydrothermal formation of tobermorite from a pre-cured cake has been investigated by transmission X-ray diffraction (XRD) using high-energy X-rays from a synchrotron radiation source in combination with a newly designed autoclave cell. The autoclave cell has a large and thin beryllium window for wide-angle X-ray diffraction; nevertheless, it withstands a steam pressure of more than 1.2 MPa, which enables in situ XRD measurements in a temperature range of 373 to 463 K under a saturated steam pressure. Formation and/or decomposition of several components has been successfully observed during 7.5 h of reaction time. From the intensity changes of the intermediate materials, namely non-crystalline C-S-H and hydroxylellestadite, two pathways for tobermorite formation have been confirmed. Thus, the newly developed autoclave cell can be used for the analyses of reaction mechanisms under specific atmospheres and temperatures.
RESUMO
A molded film of single-component polymer-grafted nanoparticles (SPNP), consisting of a spherical silica core and densely grafted polymer chains bearing hydrogen-bonding side groups capable of physical crosslinking, was investigated by in situ ultra-small-angle X-ray scattering (USAXS) measurement during a uniaxial stretching process. Static USAXS revealed that the molded SPNP formed a highly oriented twinned face-centered cubic (f.c.c.) lattice structure with the [11-1] plane aligned nearly parallel to the film surface in the initial state. Structural analysis of in situ USAXS using a model of uniaxial deformation induced by rearrangement of the nanoparticles revealed that the f.c.c. lattice was distorted in the stretching direction in proportion to the macroscopic strain until the strain reached 35%, and subsequently changed into other f.c.c. lattices with different orientations. The lattice distortion and structural transition behavior corresponded well to the elastic and plastic deformation regimes, respectively, observed in the stress-strain curve. The attractive interaction of the hydrogen bond is considered to form only at the top surface of the shell and then plays an effective role in cross-linking between nanoparticles. The rearrangement mechanism of the nanoparticles is well accounted for by a strong repulsive interaction between the densely grafted polymer shells of neighboring particles.
RESUMO
A quantum critical point of the heavy fermion Ce(Ru(1-x)Rh(x))2Si2, (x = 0,0.03) has been studied by single-crystalline neutron scattering. By accurately measuring the dynamical susceptibility at the antiferromagnetic wave vector k3 = 0.35c*, we have shown that the inverse energy width gamma(k3), i.e., the inverse correlation time, depends on temperature as gamma(k3) = c1 + c2T((3/2)+/-0.1), where c1 and c2 are x dependent constants, in a low temperature range. This critical exponent 3/2 +/- 0.1 proves that the quantum critical point is controlled by that of the itinerant antiferromagnet.
RESUMO
The molecular alignment of a merocyanine (MC) J-aggregate monolayer at the air-water interface was determined by a grazing incidence x-ray diffraction method. The obtained molecular arrangement apparently shows that the conventional formula, which accounts only for the transition dipole interaction, is not sufficient to figure out the exciton band wavelength, suggesting the importance of the electric dipole (ED) interaction. We derived a simple formula for the ED interaction energy under an extended dipole approximation and clarified the ED contribution in the MC J aggregate.
RESUMO
Spin fluctuations of the archetypal heavy fermion compound CeRu2Si2 have been investigated by neutron scattering in an entire irreducible Brillouin zone. The dynamical susceptibility is remarkably well described by the self-consistent renormalization (SCR) theory of the spin fluctuation in a phenomenological way, proving the effectiveness of the theory. The present analysis using the SCR phenomenology has allowed us to determine 14 exchange constants, which show the long-range nature of the Ruderman-Kittel-Kasuya-Yosida interaction.