Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Respir Res ; 25(1): 31, 2024 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-38221627

RESUMO

BACKGROUND: Drug-induced interstitial lung disease (DILD) is a lung injury caused by various types of drugs and is a serious problem in both clinical practice and drug development. Clinical management of the condition would be improved if there were DILD-specific biomarkers available; this study aimed to meet that need. METHODS: Biomarker candidates were identified by non-targeted metabolomics focusing on hydrophilic molecules, and further validated by targeted approaches using the serum of acute DILD patients, DILD recovery patients, DILD-tolerant patients, patients with other related lung diseases, and healthy controls. RESULTS: Serum levels of kynurenine and quinolinic acid (and kynurenine/tryptophan ratio) were elevated significantly and specifically in acute DILD patients. The diagnostic potentials of these biomarkers were superior to those of conventional lung injury biomarkers, Krebs von den Lungen-6 and surfactant protein-D, in discriminating between acute DILD patients and patients with other lung diseases, including idiopathic interstitial pneumonia and lung diseases associated with connective tissue diseases. In addition to identifying and evaluating the biomarkers, our data showed that kynurenine/tryptophan ratios (an indicator of kynurenine pathway activation) were positively correlated with serum C-reactive protein concentrations in patients with DILD, suggesting the potential association between the generation of these biomarkers and inflammation. Our in vitro experiments demonstrated that macrophage differentiation and inflammatory stimulations typified by interferon gamma could activate the kynurenine pathway, resulting in enhanced kynurenine levels in the extracellular space in macrophage-like cell lines or lung endothelial cells. Extracellular quinolinic acid levels were elevated only in macrophage-like cells but not endothelial cells owing to the lower expression levels of metabolic enzymes converting kynurenine to quinolinic acid. These findings provide clues about the molecular mechanisms behind their specific elevation in the serum of acute DILD patients. CONCLUSIONS: The serum concentrations of kynurenine and quinolinic acid as well as kynurenine/tryptophan ratios are promising and specific biomarkers for detecting and monitoring DILD and its recovery, which could facilitate accurate decisions for appropriate clinical management of patients with DILD.


Assuntos
Doenças Pulmonares Intersticiais , Lesão Pulmonar , Humanos , Cinurenina/metabolismo , Triptofano/metabolismo , Triptofano/farmacologia , Ácido Quinolínico/metabolismo , Células Endoteliais/metabolismo , Doenças Pulmonares Intersticiais/induzido quimicamente , Doenças Pulmonares Intersticiais/diagnóstico , Biomarcadores
2.
Sci Rep ; 12(1): 19819, 2022 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-36396675

RESUMO

Drug-induced interstitial lung disease (DILD) occurs when drug exposure causes inflammation of the lung interstitium. DILD can be caused by different types of drugs, and some DILD patterns results in a high mortality rate; hence, DILD poses a serious problem in clinical practice as well as drug development, and strategies to diagnose and distinguish DILD from other lung diseases are necessary. We aimed to identify novel biomarkers for DILD by performing lipidomics analysis on plasma samples from patients with acute and recovery phase DILD. Having identified lysophosphatidylcholines (LPCs) as candidate biomarkers for DILD, we determined their concentrations using validated liquid chromatography/mass spectrometry biomarker assays. In addition, we evaluated the ability of LPCs to discriminate patients with acute phase DILD from those with recovery phase DILD, DILD-tolerant, or other lung diseases, and characterized their association with clinical characteristics. Lipidomics analysis revealed a clear decrease in LPC concentrations in the plasma of patients with acute phase DILD. In particular, LPC(14:0) had the highest discriminative index against recovery phase and DILD-tolerant patients. LPC(14:0) displayed no clear association with causal drugs, or subjects' backgrounds, but was associated with disease severity. Furthermore, LPC(14:0) was able to discriminate between patients with DILD and other lung diseases, including idiopathic interstitial pneumonia and lung disease associated with connective tissue disease. LPC(14:0) is a promising biomarker for DILD that could improve the diagnosis of DILD and help to differentiate DILD from other lung diseases, such as idiopathic interstitial pneumonia and connective tissue disease.


Assuntos
Doenças do Tecido Conjuntivo , Pneumonias Intersticiais Idiopáticas , Doenças Pulmonares Intersticiais , Humanos , Lisofosfatidilcolinas , Doenças Pulmonares Intersticiais/induzido quimicamente , Doenças Pulmonares Intersticiais/diagnóstico , Biomarcadores
3.
Nat Commun ; 13(1): 5854, 2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-36195613

RESUMO

Among the various histopathological patterns of drug-induced interstitial lung disease (DILD), diffuse alveolar damage (DAD) is associated with poor prognosis. However, there is no reliable biomarker for its accurate diagnosis. Here, we show stratifin/14-3-3σ (SFN) as a biomarker candidate found in a proteomic analysis. The study includes two independent cohorts (including totally 26 patients with DAD) and controls (total 432 samples). SFN is specifically elevated in DILD patients with DAD, and is superior to the known biomarkers, KL-6 and SP-D, in discrimination of DILD patients with DAD from patients with other DILD patterns or other lung diseases. SFN is also increased in serum from patients with idiopathic DAD, and in lung tissues and bronchoalveolar lavage fluid of patients with DAD. In vitro analysis using cultured lung epithelial cells suggests that extracellular release of SFN occurs via p53-dependent apoptosis. We conclude that serum SFN is a promising biomarker for DAD diagnosis.


Assuntos
Doenças Pulmonares Intersticiais , Proteína D Associada a Surfactante Pulmonar , Proteínas 14-3-3 , Biomarcadores , Exorribonucleases , Humanos , Doenças Pulmonares Intersticiais/induzido quimicamente , Doenças Pulmonares Intersticiais/diagnóstico , Doenças Pulmonares Intersticiais/patologia , Proteômica , Proteína Supressora de Tumor p53
4.
Metabolites ; 10(9)2020 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-32878279

RESUMO

Drug-induced liver injury (DILI) is a major adverse event caused by drug treatment, which can be categorized into three types: hepatocellular, mixed, and cholestatic. Although nearly every class of drugs can cause DILI, an overall understanding of lipid profiles in DILI patients is lacking. We used lipidomics to analyze the plasma lipid profiles of patients to understand their hepatic pathophysiology and identify DILI biomarkers. We identified 463 lipids and compared their levels between the acute and recovery phases of the three types of DILI patients. Mixed and cholestatic types demonstrated specific plasma lipid alterations between the phases, but the hepatocellular type did not. Moreover, as specific indicators of mixed-type DILI, levels of several ceramides increased in the acute phase, while those of arachidonic acid-containing ether-linked phosphoglycerolipids decreased. In contrast, as specific indicators of cholestatic-type DILI, levels of palmitic acid-containing saturated or monounsaturated phosphatidylcholines increased in the acute phase, while those of arachidonic acid- or docosahexaenoic acid-containing ether-linked phosphoglycerolipids and phosphatidylinositols decreased. We also identified lipids with a relatively high capacity to discriminate the acute phase from the recovery phase and healthy subjects. These findings may help with understanding the pathophysiology of different DILI types and identify candidate biomarkers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA