RESUMO
Americium is a highly radioactive actinide element found in used nuclear fuel. Its adsorption on aluminum (hydr)oxide minerals is important to study for at least two reasons: (i) aluminum (hydr)oxide minerals are ubiquitous in the subsurface environment and (ii) bentonite clays, which are proposed engineered barriers for the geologic disposal of used nuclear fuel, have the same ≡AlOH sites as aluminum (hydr)oxide minerals. Surface complexation modeling is widely used to interpret the adsorption behavior of heavy metals on mineral surfaces. While americium sorption is understudied, multiple adsorption studies for europium, a chemical analog, are available. In this study we compiled data describing Eu(III) adsorption on three aluminum (hydr)oxide minerals-corundum (α-Al2O3), γ-alumina (γ-Al2O3) and gibbsite (γ-Al(OH)3)-and developed surface complexation models for Eu(III) adsorption on these minerals by employing diffuse double layer (DDL) and charge distribution multisite complexation (CD-MUSIC) electrostatic frameworks. We also developed surface complexation models for Am(III) adsorption on corundum (α-Al2O3) and γ-alumina (γ-Al2O3) by employing a limited number of Am(III) adsorption data sourced from literature. For corundum and γ-alumina, two different adsorbed Eu(III) species, one each for strong and weak sites, were found to be important regardless of which electrostatic framework was used. The formation constant of the weak site species was almost 10,000 times weaker than the formation constant for the corresponding strong site species. For gibbsite, two different adsorbed Eu(III) species formed on the single available site type and were important for the DDL model, whereas the best-fit CD-MUSIC model for Eu(III)-gibbsite system required only one Eu(III) surface species. The Am(III)-corundum model based on the CD-MUSIC framework had the same set of surface species as the Eu(III)-corundum model. However, the log K values of the surface reactions were different. The best-fit Am(III)-corundum model based on the DDL framework had only one site type. Both the CD-MUSIC and the DDL model developed for Am(III)-γ-alumina system only comprised of one site type and the formation constant of the corresponding surface species was ~ 500 times stronger and ~ 700 times weaker than the corresponding Eu(III) species on the weak and the strong sites, respectively. The CD-MUSIC model for corundum and both the DDL and the CD-MUSIC models for γ-alumina predicted the Am(III) adsorption data very well, whereas the DDL model for corundum overpredicted the Am(III) adsorption data. The root mean square of errors of the DDL and CD-MUSIC models developed in this study were smaller than those of two previously-published models describing Am(III)-γ-alumina system, indicating the better predictive capacity of our models. Overall, our results suggest that using Eu(III) as an analog for Am(III) is practical approach for predicting Am(III) adsorption onto well-characterized minerals.
RESUMO
Adsorption and subsequent reduction of U(VI) on Fe(II)-bearing clay minerals can control the mobility of uranium in subsurface environments. Clays such as montmorillonite provide substantial amounts of the reactive surface area in many subsurface environments, and montmorillonite-containing materials are used in the storage of spent nuclear fuel. We investigated the extent of reduction of U(VI) by Fe(II)-bearing montmorillonite at different pH values and sodium concentrations using X-ray absorption spectroscopy and chemical extractions. Nearly complete reduction of U(VI) to U(IV) occurred at a low sodium concentration at both pH 3 and 6. At pH 6 and a high sodium concentration, which inhibits U(VI) binding at cation-exchange sites, the extent of U(VI) reduction was only 70%. Surface-bound U(VI) on unreduced montmorillonite was more easily extracted into solution with bicarbonate than surface-bound U(IV) generated by reduction of U(VI) on Fe(II)-bearing montmorillonite. We developed a nonelectrostatic surface complexation model to interpret the equilibrium adsorption of U(IV) on Fe(II)-bearing montmorillonite as a function of pH and sodium concentration. These findings establish the potential importance of structural Fe(II) in low iron content smectites in controlling uranium mobility in subsurface environments.
Assuntos
Bentonita , Urânio , Adsorção , Bentonita/química , Argila , Minerais , Oxirredução , Urânio/químicaRESUMO
Microbial reduction of soluble hexavalent uranium (U(VI)) to sparingly soluble tetravalent uranium (U(IV)) has been explored as an in situ strategy to immobilize U. Organic ligands might pose a potential hindrance to the success of such remediation efforts. In the current study, a set of structurally diverse organic ligands were shown to enhance the dissolution of crystalline uraninite (UO2) for a wide range of ligand concentrations under anoxic conditions at pH 7.0. Comparisons were made to ligand-induced U mobilization from noncrystalline U(IV). For both U phases, aqueous U concentrations remained low in the absence of organic ligands (<25 nM for UO2; 300 nM for noncrystalline U(IV)). The tested organic ligands (2,6-pyridinedicarboxylic acid (DPA), desferrioxamine B (DFOB), N,N'-di(2-hydroxybenzyl)ethylene-diamine-N,N'-diacetic acid (HBED), and citrate) enhanced U mobilization to varying extents. Over 45 days, the ligands mobilized only up to 0.3% of the 370 µM UO2, while a much larger extent of the 300 µM of biomass-bound noncrystalline U(IV) was mobilized (up to 57%) within only 2 days (>500 times more U mobilization). This work shows the potential of numerous organic ligands present in the environment to mobilize both recalcitrant and labile U forms under anoxic conditions to hazardous levels and, in doing so, undermine the stability of immobilized U(IV) sources.
Assuntos
Compostos de Urânio , Urânio , Biomassa , Ligantes , Oxirredução , Urânio/química , Compostos de Urânio/químicaRESUMO
Adsorption of uranium onto goethite is an important partitioning process that controls uranium mobility in subsurface environments, for which many different surface complexation models (SCMs) have been developed. While individual models can fit the data for which they are parameterized, many perform poorly when compared with experimental data covering a broader range of conditions. There is an imperative need to quantitatively evaluate the variations in the models and to develop a more robust model that can be used with more confidence across the wide range of conditions. We conducted an intercomparison and refinement of the SCMs based on a metadata analysis. By seeking the globally best fit to a composite dataset with wide ranges of pH, solid/sorbate ratios, and carbonate concentrations, we developed a series of models with different levels of complexity following a systematic roadmap. The goethite-uranyl-carbonate ternary surface complexes were required in every model. For the spectroscopically informed models, a triple-plane model was found to provide the best fit, but the performance of the double-layer model with bidentate goethite-uranyl and goethite-uranyl-carbonate complexes was also comparable. Nevertheless, the models that ignore the bidentate feature of uranyl surface complexation consistently performed poorly. The goodness of fitting for the models that ignore adsorption of carbonate and the charge distributions was not significantly compromised compared with that of their counterparts that considered those. This approach of model development for a large and varied dataset improved our understanding of U(VI)-goethite surface reactions and can lead to a path for generating a single set of reactions and equilibrium constants for including U(VI) adsorption onto goethite in reactive transport models.
Assuntos
Compostos de Ferro , Urânio , Adsorção , Concentração de Íons de Hidrogênio , Metadados , MineraisRESUMO
Surface-functionalized magnetic nanoparticles are promising adsorbents due to their large surface areas and ease of separation after contaminant removal. In this work, the affinity of Cr(VI) adsorption to 8 nm surface-functionalized superparamagnetic magnetite nanoparticles was determined for surface coatings with amine (trimethyloctadecylammonium bromide, CTAB) and carboxyl (stearic acid, SA) functional groups. Cr(VI) adsorbed more strongly to the CTAB-coated nanoparticles than to the SA-coated materials due to electrostatic interactions between positively charged CTAB and anionic Cr(VI) species. The adsorption of Cr(VI) by CTAB- and SA-coated nanoparticles increased with decreasing pH (4.5-10), which could be simulated by a surface complexation model. Cr(VI) removal performance by the nanocomposite was evaluated for two realistic drinking water compositions. The co-occurrence of divalent cations (Ca2+ and Mg2+) and Cr(VI) resulted in decreased Cr(VI) adsorption as particles were destabilized, leading to the aggregation and lower effective surface area, confirming the importance of the overall water composition on the performance of novel engineered nanomaterials for water treatment applications.
Assuntos
Nanopartículas , Poluentes Químicos da Água , Purificação da Água , Adsorção , Cromo , Compostos Férricos , Cinética , ÁguaRESUMO
Per- and polyfluoroalkyl substances (PFAS) are fluorinated and refractory pollutants that are ubiquitous in industrial wastewater. Photocatalytic destruction of such pollutants with catalysts such as TiO2 and ZnO is an attractive avenue for removal of PFAS, but refined forms of such photocatalysts are expensive. This study, for the first time, utilized milled unrefined raw mineral ilmenite, coupled to UV-C irradiation to achieve mineralization of the two model PFAS compounds perfluorooctanoic acid (PFOA) and perfluoro octane sulfonic acid (PFOS). Results obtained using a bench-scale photocatalytic reactor system demonstrated rapid removal kinetics of PFAS compounds (>90% removal in less than 10 h) in environmentally-relevant concentrations (200-1000 ppb). Raw ilmenite was reused over three consecutive degradation cycles of PFAS, retaining >80% removal efficiency. Analysis of degradation products indicated defluorination and the presence of shorter-chain PFAS intermediates in the initial samples. End samples indicated the disappearance of short-chain PFAS intermediates and further accumulation of fluoride ions, suggesting that original PFAS compounds underwent mineralization due to an oxygen-radical-based photocatalytic destruction mechanism induced by TiO2 present in ilmenite and UV irradiation. The outcome of this study implies that raw ilmenite coupled to UV-C is suitable for cost-effective reactor operation and efficient photocatalytic destruction of PFAS compounds.