Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Clin Sci (Lond) ; 127(3): 163-70, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24552454

RESUMO

Muscle microvascular surface area determines substrate and hormonal exchanges between plasma and muscle interstitium. GLP-1 (glucagon-like peptide-1) regulates glucose-dependent insulin secretion and has numerous extrapancreatic effects, including a salutary vascular action. To examine whether GLP-1 recruits skeletal and cardiac muscle microvasculature in healthy humans, 26 overnight-fasted healthy adults received a systemic infusion of GLP-1 (1.2 pmol/kg of body mass per min) for 150 min. Skeletal and cardiac muscle MBV (microvascular blood volume), MFV (microvascular flow velocity) and MBF (microvascular blood flow) were determined at baseline and after 30 and 150 min. Brachial artery diameter and mean flow velocity were measured and total blood flow was calculated before and at the end of the GLP-1 infusion. GLP-1 infusion raised plasma GLP-1 concentrations to the postprandial levels and suppressed plasma glucagon concentrations with a transient increase in plasma insulin concentrations. Skeletal and cardiac muscle MBV and MBF increased significantly at both 30 and 150 min (P<0.05). MFV did not change in skeletal muscle, but decreased slightly in cardiac muscle. GLP-1 infusion significantly increased brachial artery diameter (P<0.005) and flow velocity (P=0.05) at 150 min, resulting in a significant increase in total brachial artery blood flow (P<0.005). We conclude that acute GLP-1 infusion significantly recruits skeletal and cardiac muscle microvasculature in addition to relaxing the conduit artery in healthy humans. This could contribute to increased tissue oxygen, nutrient and insulin delivery and exchange and therefore better prandial glycaemic control and tissue function in humans.


Assuntos
Vasos Coronários/metabolismo , Peptídeo 1 Semelhante ao Glucagon/farmacologia , Incretinas/farmacologia , Microvasos/metabolismo , Músculo Esquelético/irrigação sanguínea , Adolescente , Adulto , Velocidade do Fluxo Sanguíneo/efeitos dos fármacos , Volume Sanguíneo/efeitos dos fármacos , Vasos Coronários/efeitos dos fármacos , Glucagon/sangue , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Peptídeo 1 Semelhante ao Glucagon/fisiologia , Humanos , Microvasos/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Fluxo Sanguíneo Regional/efeitos dos fármacos
2.
J Endocr Soc ; 2(2): 190-206, 2018 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-29568814

RESUMO

CONTEXT: Glucagon-like peptide-1 (GLP-1) and insulin increase muscle microvascular perfusion, thereby increasing tissue endothelial surface area and nutrient delivery. OBJECTIVE: To examine whether GLP-1 and insulin act additively on skeletal and cardiac microvasculature and conduit artery. DESIGN: Healthy adults underwent three study protocols in random order. SETTING: Clinical Research Unit at the University of Virginia. METHODS: Overnight-fasted participants received an intravenous infusion of GLP-1 (1.2 pmol/kg/min) or normal saline for 150 minutes with or without a 2-hour euglycemic insulin clamp (1 mU/kg/min) superimposed from 30 minutes onward. Skeletal and cardiac muscle microvascular blood volume (MBV), flow velocity, and flow; brachial artery diameter, flow velocity, and blood flow; and pulse wave velocity (PWV) were measured. RESULTS: GLP-1 significantly increased skeletal and cardiac muscle MBV and microvascular blood flow (MBF) after 30 minutes; these remained elevated at 150 minutes. Insulin also increased skeletal and cardiac muscle MBV and MBF. Addition of insulin to GLP-1 did not further increase skeletal and cardiac muscle MBV and MBF. GLP-1 and insulin increased brachial artery diameter and blood flow, but this effect was not additive. Neither GLP-1, insulin, nor GLP-1 and insulin altered PWV. Combined GLP-1 and insulin infusion did not result in higher whole-body glucose disposal. CONCLUSION: GLP-1 and insulin at physiological concentrations acutely increase skeletal and cardiac muscle microvascular perfusion and dilate conduit artery in healthy adults; these effects are not additive. Thus, GLP-1 and insulin may regulate skeletal and cardiac muscle endothelial surface area and nutrient delivery under physiological conditions.

3.
J Clin Endocrinol Metab ; 97(7): E1208-12, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22508711

RESUMO

CONTEXT: Angiotensin II type 1 receptor (AT(1)R) tone restricts muscle microvascular blood volume (MBV) and decreases muscle insulin delivery and glucose use. OBJECTIVE: The objective of the study was to examine whether acute AT(1)R blockade alters microvascular perfusion in skeletal and cardiac muscle in humans. SETTING: The study was conducted at the General Clinical Research Center at the University of Virginia. METHODS: Eight overnight-fasted healthy young adults were studied thrice in random order. In study 1, each subject received candesartan (32 mg) orally at time 0. In study 2, each subject received placebo at time 0 and a 1 mU/min · kg euglycemic insulin clamp from time 240 to 360 min. In study 3, each subject received candesartan (32 mg) orally at time 0 and insulin infusion from 240 to 360 min. Forearm skeletal and cardiac muscle MBV, microvascular flow velocity, and microvascular blood flow (MBF) were determined at baseline and at 240 and 360 min. RESULTS: Candesartan treatment acutely recruited microvasculature in both skeletal and cardiac muscle by significantly increasing MBV (P < 0.03 and P = 0.02, respectively) and MBF (P < 0.03 for both) without altering microvascular flow velocity. Insulin infusion significantly increased cardiac MBV (P = 0.02) and MBF (P < 0.02). Superimposing insulin infusion 4 h after candesartan ingestion did not further recruit microvasculature. Insulin-mediated whole-body glucose disposal did not differ with or without candesartan pretreatment. CONCLUSIONS: Acute AT(1)R blockade with candesartan recruits skeletal as well as cardiac muscle microvasculature in healthy humans without altering insulin-mediated whole-body glucose disposal. This may contribute to the observed improvement in the cardiovascular outcomes in patients receiving prolonged treatment with AT(1)R blockers.


Assuntos
Benzimidazóis/farmacologia , Vasos Coronários/efeitos dos fármacos , Microvasos/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Tetrazóis/farmacologia , Administração Oral , Adolescente , Adulto , Bloqueadores do Receptor Tipo 1 de Angiotensina II/administração & dosagem , Bloqueadores do Receptor Tipo 1 de Angiotensina II/farmacologia , Anti-Hipertensivos/administração & dosagem , Anti-Hipertensivos/farmacologia , Benzimidazóis/administração & dosagem , Compostos de Bifenilo , Vasos Coronários/metabolismo , Vasos Coronários/fisiologia , Feminino , Glucose/farmacocinética , Técnica Clamp de Glucose , Saúde , Humanos , Insulina/administração & dosagem , Insulina/farmacologia , Masculino , Microvasos/metabolismo , Microvasos/fisiologia , Músculo Esquelético/irrigação sanguínea , Músculo Esquelético/metabolismo , Miocárdio/metabolismo , Tetrazóis/administração & dosagem , Fatores de Tempo , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA