Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Tipo de estudo
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 293(25): 9580-9593, 2018 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-29700116

RESUMO

Many mutations in genes encoding proteins such as Parkin, PTEN-induced putative kinase 1 (PINK1), protein deglycase DJ-1 (DJ-1 or PARK7), leucine-rich repeat kinase 2 (LRRK2), and α-synuclein have been linked to familial forms of Parkinson's disease (PD). The consequences of these mutations, such as altered mitochondrial function and pathological protein aggregation, are starting to be better understood. However, little is known about the mechanisms explaining why alterations in such diverse cellular processes lead to the selective loss of dopamine (DA) neurons in the substantia nigra (SNc) in the brain of individuals with PD. Recent work has shown that one of the reasons for the high vulnerability of SNc DA neurons is their high basal rate of mitochondrial oxidative phosphorylation (OXPHOS), resulting from their highly complex axonal arborization. Here, we examined whether axonal growth and basal mitochondrial function are altered in SNc DA neurons from Parkin-, Pink1-, or DJ-1-KO mice. We provide evidence for increased basal OXPHOS in Parkin-KO DA neurons and for reduced survival of DA neurons that have a complex axonal arbor. The surviving smaller neurons exhibited reduced vulnerability to the DA neurotoxin and mitochondrial complex I inhibitor MPP+, and this reduction was associated with reduced expression of the DA transporter. Finally, we found that glial cells play a role in the reduced resilience of DA neurons in these mice and that WT Parkin overexpression rescues this phenotype. Our results provide critical insights into the complex relationship between mitochondrial function, axonal growth, and genetic risk factors for PD.


Assuntos
Neurônios Dopaminérgicos/patologia , Metabolismo Energético , Mitocôndrias/patologia , Doença de Parkinson/genética , Doença de Parkinson/mortalidade , Proteína Desglicase DJ-1/fisiologia , Proteínas Quinases/fisiologia , Ubiquitina-Proteína Ligases/fisiologia , Animais , Células Cultivadas , Dopamina/metabolismo , Neurônios Dopaminérgicos/metabolismo , Camundongos , Camundongos Knockout , Mitocôndrias/metabolismo , Fosforilação Oxidativa , Doença de Parkinson/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA