Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Mol Pharm ; 20(12): 6169-6183, 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-37970806

RESUMO

Breast cancer brain metastases (BM) are associated with a dismal prognosis and very limited treatment options. Standard chemotherapy is challenging in BM patients because the high dosage required for an effective outcome causes unacceptable systemic toxicities, a consequence of poor brain penetration, and a short physiological half-life. Nanomedicines have the potential to circumvent off-target toxicities and factors limiting the efficacy of conventional chemotherapy. The HER3 receptor is commonly expressed in breast cancer BM. Here, we investigate the use of hyperbranched polymers (HBP) functionalized with a HER3 bispecific-antibody fragment for cancer cell-specific targeting and pH-responsive release of doxorubicin (DOX) to selectively deliver and treat BM. We demonstrated that DOX-release from the HBP carrier was controlled, gradual, and greater in endosomal acidic conditions (pH 5.5) relative to physiologic pH (pH 7.4). We showed that the HER3-targeted HBP with DOX payload was HER3-specific and induced cytotoxicity in BT474 breast cancer cells (IC50: 17.6 µg/mL). Therapeutic testing in a BM mouse model showed that HER3-targeted HBP with DOX payload impacted tumor proliferation, reduced tumor size, and prolonged overall survival. HER3-targeted HBP level detected in ex vivo brain samples was 14-fold more than untargeted-HBP. The HBP treatments were well tolerated, with less cardiac and oocyte toxicity compared to free DOX. Taken together, our HER3-targeted HBP nanomedicine has the potential to deliver chemotherapy to BM while reducing chemotherapy-associated toxicities.


Assuntos
Neoplasias Encefálicas , Neoplasias da Mama , Nanopartículas , Animais , Camundongos , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Polímeros/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Concentração de Íons de Hidrogênio , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos
2.
BMC Cancer ; 22(1): 334, 2022 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-35346112

RESUMO

BACKGROUND: Normal human tissues do not express glycans terminating with the sialic acid N-glycolylneuraminic acid (Neu5Gc), yet Neu5Gc-containing glycans have been consistently found in human tumor tissues, cells and secretions and have been proposed as a cancer biomarker. We engineered a Neu5Gc-specific lectin called SubB2M, and previously reported elevated Neu5Gc biomarkers in serum from ovarian cancer patients using a Surface Plasmon Resonance (SPR)-based assay. Here we report an optimized SubB2M SPR-based assay and use this new assay to analyse sera from breast cancer patients for Neu5Gc levels. METHODS: To enhance specificity of our SPR-based assay, we included a non-sialic acid binding version of SubB, SubBA12, to control for any non-specific binding to SubB2M, which improved discrimination of cancer-free controls from early-stage ovarian cancer. We analysed 96 serum samples from breast cancer patients at all stages of disease compared to 22 cancer-free controls using our optimized SubB2M-A12-SPR assay. We also analysed a collection of serum samples collected at 6 monthly intervals from breast cancer patients at high risk for disease recurrence or spread. RESULTS: Analysis of sera from breast cancer cases revealed significantly elevated levels of Neu5Gc biomarkers at all stages of breast cancer. We show that Neu5Gc serum biomarker levels can discriminate breast cancer patients from cancer-free individuals with 98.96% sensitivity and 100% specificity. Analysis of serum collected prospectively, post-diagnosis, from breast cancer patients at high risk for disease recurrence showed a trend for a decrease in Neu5Gc levels immediately following treatment for those in remission. CONCLUSIONS: Neu5Gc serum biomarkers are a promising new tool for early detection and disease monitoring for breast cancer that may complement current imaging- and biopsy-based approaches.


Assuntos
Neoplasias da Mama , Biomarcadores Tumorais , Neoplasias da Mama/diagnóstico , Feminino , Humanos , Recidiva Local de Neoplasia , Ácidos Neuramínicos/metabolismo
3.
Semin Cell Dev Biol ; 94: 74-83, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-30439562

RESUMO

The past two decades have seen the identification of important roles for calcium signalling in many of the hallmarks of cancer. One of the cancer types that has been a particular focus of such studies is breast cancer. The breast is intrinsically linked to the calcium ion due to the importance of milk calcium in neonatal growth and development. Indeed, some of the calcium channels and pumps involved in transporting calcium ions into milk also have altered expression in some breast cancers. However, altered expression is not confined to channels and pumps important in lactation, other calcium channels and pumps may also be modulated and may even be specific to breast cancer molecular subtypes. This review considers calcium signalling in the context of breast cancer and provides an overview of the roles that have been attributed to specific regulators of cellular calcium levels in processes relevant to breast cancer progression. Emerging areas in the study of calcium signalling in breast cancer are considered, such as the intersection between calcium signalling, the tumour microenvironment and breast cancer.


Assuntos
Neoplasias da Mama/metabolismo , Sinalização do Cálcio , Cálcio/metabolismo , Animais , Neoplasias da Mama/patologia , Feminino , Humanos , Microambiente Tumoral
4.
Br J Cancer ; 124(1): 156-160, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33024263

RESUMO

Brain metastases are a major cause of melanoma-related mortality and morbidity. We undertook whole-exome sequencing of 50 tumours from patients undergoing surgical resection of brain metastases presenting as the first site of visceral disease spread and validated our findings in an independent dataset of 18 patients. Brain metastases had a similar driver mutational landscape to cutaneous melanomas in TCGA. However, KRAS was the most significantly enriched driver gene, with 4/50 (8%) of brain metastases harbouring non-synonymous mutations. Hotspot KRAS mutations were mutually exclusive from BRAFV600, NRAS and HRAS mutations and were associated with a reduced overall survival from the resection of brain metastases (HR 10.01, p = 0.001). Mutations in KRAS were clonal and concordant with extracranial disease, suggesting that these mutations are likely present within the primary. Our analyses suggest that KRAS mutations could help identify patients with primary melanoma at higher risk of brain metastases who may benefit from more intensive, protracted surveillance.


Assuntos
Neoplasias Encefálicas/genética , Neoplasias Encefálicas/secundário , Melanoma/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Neoplasias Cutâneas/genética , Análise Mutacional de DNA , Humanos , Mutação , Recidiva , Melanoma Maligno Cutâneo
5.
Br J Cancer ; 123(11): 1665-1672, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32939056

RESUMO

BACKGROUND: Metaplastic breast carcinoma encompasses a heterogeneous group of tumours with differentiation into squamous and/or spindle, chondroid, osseous or rhabdoid mesenchymal-looking elements. Emerging immunotherapies targeting Programmed Death Ligand 1 (PD-L1) and immune-suppressing T cells (Tregs) may benefit metaplastic breast cancer patients, which are typically chemo-resistant and do not express hormone therapy targets. METHODS: We evaluated the immunohistochemical expression of PD-L1 and FOXP3, and the extent of tumour infiltrating lymphocytes (TILs) in a large cohort of metaplastic breast cancers, with survival data. RESULTS: Metaplastic breast cancers were significantly enriched for PD-L1 positive tumour cells, compared to triple-negative ductal breast cancers (P < 0.0001), while there was no significant difference in PD-L1 positive TILs. Metaplastic breast cancers were also significantly enriched for TILs expressing FOXP3, with FOXP3 positive intra-tumoural TILs (iTILs) associated with an adverse prognostic outcome (P = 0.0226). Multivariate analysis identified FOXP3 iTILs expression status as an important independent prognostic factor for patient survival. CONCLUSIONS: Our findings indicate the clinical significance and prognostic value of FOXP3, PD-1/PD-L1 checkpoint and TILs in metaplastic breast cancer and confirm that a subset of metaplastics may benefit from immune-based therapies.


Assuntos
Antígeno B7-H1/biossíntese , Biomarcadores Tumorais/imunologia , Neoplasias da Mama/patologia , Fatores de Transcrição Forkhead/biossíntese , Adulto , Idoso , Neoplasias da Mama/imunologia , Feminino , Humanos , Inibidores de Checkpoint Imunológico , Linfócitos do Interstício Tumoral/imunologia , Metaplasia , Pessoa de Meia-Idade
6.
J Pathol ; 247(5): 552-562, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30426489

RESUMO

During the last decade, the genomics revolution has driven critical advances in molecular oncology and pathology, and a deeper appreciation of heterogeneity that is beginning to reshape our thinking around diagnostic classification. Recent developments have seen existing classification systems modified and improved where possible, gene-based diagnostics implemented and tumour-immune interactions modulated. We present a detailed discussion of this progress, including advances in the understanding of breast tumour classification, e.g. mixed ductal-lobular tumours and the spectrum of triple-negative breast cancer. The latest information on clinical trials and the implementation of gene-based diagnostics, including MammaPrint and Oncotype Dx and others, is synthesised, and emerging targeted therapies, as well as the burgeoning immuno-oncology field, and their relevance in breast cancer, are discussed. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Assuntos
Neoplasias da Mama/patologia , Neoplasias da Mama/genética , Neoplasias da Mama/terapia , Feminino , Genes BRCA1/fisiologia , Genes BRCA2/fisiologia , Genes Neoplásicos/genética , Genômica , Humanos , Linfócitos do Interstício Tumoral/fisiologia , Terapia de Alvo Molecular/métodos , Prognóstico
7.
J Pathol ; 244(4): 460-468, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29344954

RESUMO

Mixed ductal-lobular carcinomas (MDLs) show both ductal and lobular morphology, and constitute an archetypal example of intratumoural morphological heterogeneity. The mechanisms underlying the coexistence of these different morphological entities are poorly understood, although theories include that these components either represent 'collision' of independent tumours or evolve from a common ancestor. We performed comprehensive clinicopathological analysis of a cohort of 82 MDLs, and found that: (1) MDLs more frequently coexist with ductal carcinoma in situ (DCIS) than with lobular carcinoma in situ (LCIS); (2) the E-cadherin-catenin complex was normal in the ductal component in 77.6% of tumours; and (3) in the lobular component, E-cadherin was almost always aberrantly located in the cytoplasm, in contrast to invasive lobular carcinoma (ILC), where E-cadherin is typically absent. Comparative genomic hybridization and multiregion whole exome sequencing of four representative cases revealed that all morphologically distinct components within an individual case were clonally related. The mutations identified varied between cases; those associated with a common clonal ancestry included BRCA2, TBX3, and TP53, whereas those associated with clonal divergence included CDH1 and ESR1. Together, these data support a model in which separate morphological components of MDLs arise from a common ancestor, and lobular morphology can arise via a ductal pathway of tumour progression. In MDLs that present with LCIS and DCIS, the clonal divergence probably occurs early, and is frequently associated with complete loss of E-cadherin expression, as in ILC, whereas, in the majority of MDLs, which present with DCIS but not LCIS, direct clonal divergence from the ductal to the lobular phenotype occurs late in tumour evolution, and is associated with aberrant expression of E-cadherin. The mechanisms driving the phenotypic change may involve E-cadherin-catenin complex deregulation, but are yet to be fully elucidated, as there is significant intertumoural heterogeneity, and each case may have a unique molecular mechanism. © 2018 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.


Assuntos
Carcinoma de Mama in situ/patologia , Neoplasias da Mama/patologia , Carcinoma Intraductal não Infiltrante/patologia , Neoplasias Complexas Mistas/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Antígenos CD/análise , Antígenos CD/genética , Biomarcadores Tumorais/análise , Biomarcadores Tumorais/genética , Carcinoma de Mama in situ/química , Carcinoma de Mama in situ/genética , Neoplasias da Mama/química , Neoplasias da Mama/genética , Caderinas/análise , Caderinas/genética , Carcinoma Intraductal não Infiltrante/química , Carcinoma Intraductal não Infiltrante/genética , Hibridização Genômica Comparativa , Análise Mutacional de DNA , Progressão da Doença , Feminino , Predisposição Genética para Doença , Humanos , Imuno-Histoquímica , Pessoa de Meia-Idade , Mutação , Neoplasias Complexas Mistas/química , Neoplasias Complexas Mistas/genética , Fenótipo , Sequenciamento do Exoma
8.
Adv Exp Med Biol ; 1152: 75-104, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31456181

RESUMO

Breast cancer encompasses a heterogeneous collection of neoplasms with diverse morphologies, molecular phenotypes, responses to therapy, probabilities of relapse and overall survival. Traditional histopathological classification aims to categorise tumours into subgroups to inform clinical management decisions, but the diversity within these subgroups remains considerable. Application of massively parallel sequencing technologies in breast cancer research has revealed the true depth of variability in terms of the genetic, phenotypic, cellular and microenvironmental constitution of individual tumours, with the realisation that each tumour is exquisitely unique. This poses great challenges in predicting the development of drug resistance, and treating metastatic disease. Central to achieving fully personalised clinical management is translating new insights on breast cancer heterogeneity into the clinical setting, to evolve the taxonomy of breast cancer and improve risk stratification.


Assuntos
Neoplasias da Mama/patologia , Segunda Neoplasia Primária/patologia , Resistencia a Medicamentos Antineoplásicos , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Recidiva Local de Neoplasia
9.
Int J Mol Sci ; 20(10)2019 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-31121957

RESUMO

Patients with brain-metastatic breast cancer face a bleak prognosis marked by morbidity and premature death. A deeper understanding of molecular interactions in the metastatic brain tumour microenvironment may inform the development of new therapeutic strategies. In this study, triple-negative MDA-MB-231 breast cancer cells or PBS (modelling traumatic brain injury) were stereotactically injected into the cerebral cortex of NOD/SCID mice to model metastatic colonization. Brain cells were isolated from five tumour-associated samples and five controls (pooled uninvolved and injured tissue) by immunoaffinity chromatography, and proteomic profiles were compared using the Sequential Window Acquisition of All Theoretical Mass Spectra (SWATH-MS) discovery platform. Ontology and cell type biomarker enrichment analysis of the 125 differentially abundant proteins (p < 0.05) showed the changes largely represent cellular components involved in metabolic reprogramming and cell migration (min q = 4.59 × 10-5), with high-throughput PubMed text mining indicating they have been most frequently studied in the contexts of mitochondrial dysfunction, oxidative stress and autophagy. Analysis of mouse brain cell type-specific biomarkers suggested the changes were paralleled by increased proportions of microglia, mural cells and interneurons. Finally, we orthogonally validated three of the proteins in an independent xenograft cohort, and investigated their expression in craniotomy specimens from triple-negative metastatic breast cancer patients, using a combination of standard and fluorescent multiplex immunohistochemistry. This included 3-Hydroxyisobutyryl-CoA Hydrolase (HIBCH), which is integral for gluconeogenic valine catabolism in the brain, and was strongly induced in both graft-associated brain tissue (13.5-fold by SWATH-MS; p = 7.2 × 10-4), and areas of tumour-associated, reactive gliosis in human clinical samples. HIBCH was also induced in the tumour compartment, with expression frequently localized to margins and haemorrhagic areas. These observations raise the possibility that catabolism of valine is an effective adaptation in metastatic cells able to access it, and that intermediates or products could be transferred from tumour-associated glia. Overall, our findings indicate that metabolic reprogramming dominates the proteomic landscape of graft-associated brain tissue in the intracranial MDA-MB-231 xenograft model. Brain-derived metabolic provisions could represent an exploitable dependency in breast cancer brain metastases.


Assuntos
Neoplasias Encefálicas/secundário , Encéfalo/patologia , Neoplasias da Mama/patologia , Proteínas/análise , Microambiente Tumoral , Animais , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Feminino , Humanos , Camundongos Endogâmicos NOD , Camundongos SCID , Proteômica
10.
Int J Mol Sci ; 20(6)2019 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-30875730

RESUMO

Brain metastases are the most prevalent of intracranial malignancies. They are associated with a very poor prognosis and near 100% mortality. This has been the case for decades, largely because we lack effective therapeutics to augment surgery and radiotherapy. Notwithstanding improvements in the precision and efficacy of these life-prolonging treatments, with no reliable options for adjunct systemic therapy, brain recurrences are virtually inevitable. The factors limiting intracranial efficacy of existing agents are both physiological and molecular in nature. For example, heterogeneous permeability, abnormal perfusion and high interstitial pressure oppose the conventional convective delivery of circulating drugs, thus new delivery strategies are needed to achieve uniform drug uptake at therapeutic concentrations. Brain metastases are also highly adapted to their microenvironment, with complex cross-talk between the tumor, the stroma and the neural compartments driving speciation and drug resistance. New strategies must account for resistance mechanisms that are frequently engaged in this milieu, such as HER3 and other receptor tyrosine kinases that become induced and activated in the brain microenvironment. Here, we discuss molecular and physiological factors that contribute to the recalcitrance of these tumors, and review emerging therapeutic strategies, including agents targeting the PI3K axis, immunotherapies, nanomedicines and MRI-guided focused ultrasound for externally controlling drug delivery.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias Encefálicas/secundário , Neoplasias Encefálicas/terapia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Antineoplásicos/farmacologia , Encéfalo/cirurgia , Neoplasias Encefálicas/imunologia , Quimiorradioterapia Adjuvante , Sistemas de Liberação de Medicamentos , Humanos , Imunoterapia , Terapia de Alvo Molecular , Nanomedicina , Nanopartículas , Resultado do Tratamento , Microambiente Tumoral
11.
Hum Mol Genet ; 25(15): 3269-3283, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27378691

RESUMO

Predicting response to endocrine therapy and survival in oestrogen receptor positive breast cancer is a significant clinical challenge and novel prognostic biomarkers are needed. Long-range regulators of gene expression are emerging as promising biomarkers and therapeutic targets for human diseases, so we have explored the potential of distal enhancer elements of non-coding RNAs in the prognostication of breast cancer survival. HOTAIR is a long non-coding RNA that is overexpressed, promotes metastasis and is predictive of decreased survival. Here, we describe a long-range transcriptional enhancer of the HOTAIR gene that binds several hormone receptors and associated transcription factors, interacts with the HOTAIR promoter and augments transcription. This enhancer is dependent on Forkhead-Box transcription factors and functionally interacts with a novel alternate HOTAIR promoter. HOTAIR expression is negatively regulated by oestrogen, positively regulated by FOXA1 and FOXM1, and is inversely correlated with oestrogen receptor and directly correlated with FOXM1 in breast tumours. The combination of HOTAIR and FOXM1 enables greater discrimination of endocrine therapy responders and non-responders in patients with oestrogen receptor positive breast cancer. Consistent with this, HOTAIR expression is increased in cell-line models of endocrine resistance. Analysis of breast cancer gene expression data indicates that HOTAIR is co-expressed with FOXA1 and FOXM1 in HER2-enriched tumours, and these factors enhance the prognostic power of HOTAIR in aggressive HER2+ breast tumours. Our study elucidates the transcriptional regulation of HOTAIR, identifies HOTAIR and its regulators as novel biomarkers of patient response to endocrine therapy and corroborates the importance of transcriptional enhancers in cancer.


Assuntos
Biomarcadores Tumorais/biossíntese , Neoplasias da Mama/metabolismo , Regulação Neoplásica da Expressão Gênica , RNA Longo não Codificante/biossíntese , RNA Neoplásico/biossíntese , Transcrição Gênica , Biomarcadores Tumorais/genética , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Feminino , Proteína Forkhead Box M1/biossíntese , Proteína Forkhead Box M1/genética , Fator 3-alfa Nuclear de Hepatócito/biossíntese , Fator 3-alfa Nuclear de Hepatócito/genética , Humanos , Células MCF-7 , Proteínas de Neoplasias/biossíntese , Proteínas de Neoplasias/genética , RNA Longo não Codificante/genética , RNA Neoplásico/genética
12.
Breast Cancer Res Treat ; 170(1): 179-188, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29468485

RESUMO

PURPOSE: We aimed to generate and characterize a novel cell line from a breast cancer bone metastasis to better study the progression of the disease. METHODS: The cell line, P7731, was derived from a metastatic bone lesion of a breast cancer patient and assessed for marker expression. P7731 was analyzed for DNA copy number variation, somatic mutations, and gene expression and was compared with the primary tumor. RESULTS: P7731 cells are negative for estrogen receptor alpha (ERα), progesterone receptor (PR), and HER2 (triple-negative); strongly express vimentin (100% of cells positive) and also express cytokeratins 8/18 and 19 but at lower frequencies. Flow cytometry indicates P7731 cells are predominantly CD44+/CD49f+/EpCAM-, consistent with a primitive, mesenchymal-like phenotype. The cell line is tumorigenic in immunocompromised mice. Exome sequencing identified a total of 45 and 76 somatic mutations in the primary tumor and cell line, respectively, of which 32 were identified in both samples and included mutations in known driver genes PIK3CA, TP53, and ARID1A. P7731 retains the DNA copy number alterations present in the matching primary tumor. Homozygous deletions detected in the cell line and in the primary tumor were found in regions containing three known (CDKN2A, CDKN2B, and CDKN1B) and 23 putative tumor suppressor genes. Cell line-specific gene amplification coupled with mRNA expression analysis revealed genes and pathways with potential pro-metastatic functions. CONCLUSION: This novel human breast cancer-bone metastasis cell line will be a useful model to study aspects of breast cancer biology, particularly metastasis-related changes from breast to bone.


Assuntos
Neoplasias Ósseas/patologia , Linhagem Celular Tumoral , Proteínas de Neoplasias/genética , Neoplasias de Mama Triplo Negativas/patologia , Animais , Neoplasias Ósseas/genética , Neoplasias Ósseas/secundário , Mama/patologia , Variações do Número de Cópias de DNA/genética , Exoma/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Células MCF-7 , Camundongos , Mutação , Neoplasias de Mama Triplo Negativas/genética
13.
Breast Cancer Res Treat ; 167(1): 289-301, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28889351

RESUMO

PURPOSE: Cell lines are extremely useful tools in breast cancer research. Their key benefits include a high degree of control over experimental variables and reproducibility. However, the advantages must be balanced against the limitations of modelling such a complex disease in vitro. Informed selection of cell line(s) for a given experiment now requires essential knowledge about molecular and phenotypic context in the culture dish. METHODS: We performed multidimensional profiling of 36 widely used breast cancer cell lines that were cultured under standardised conditions. Flow cytometry and digital immunohistochemistry were used to compare the expression of 14 classical breast cancer biomarkers related to intrinsic molecular profiles and differentiation states: EpCAM, CD24, CD49f, CD44, ER, AR, HER2, EGFR, E-cadherin, p53, vimentin, and cytokeratins 5, 8/18 and 19. RESULTS: This cell-by-cell analysis revealed striking heterogeneity within cultures of individual lines that would be otherwise obscured by analysing cell homogenates, particularly amongst the triple-negative lines. High levels of p53 protein, but not RNA, were associated with somatic mutations (p = 0.008). We also identified new subgroups using the nanoString PanCancer Pathways panel (730 transcripts representing 13 canonical cancer pathways). Unsupervised clustering identified five groups: luminal/HER2, immortalised ('normal'), claudin-low and two basal clusters, distinguished mostly by baseline expression of TGF-beta and PI3-kinase pathway genes. CONCLUSION: These features are compared with other published genotype and phenotype information in a user-friendly reference table to help guide selection of the most appropriate models for in vitro and in vivo studies, and as a framework for classifying new patient-derived cancer cell lines and xenografts.


Assuntos
Neoplasias da Mama/genética , Perfilação da Expressão Gênica , Heterogeneidade Genética , Proteínas de Neoplasias/genética , Linhagem Celular Tumoral , Feminino , Citometria de Fluxo , Regulação Neoplásica da Expressão Gênica/genética , Genótipo , Humanos , Fenótipo
14.
Histopathology ; 73(1): 68-80, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29465777

RESUMO

AIMS: A better understanding of the expression of cancer/testis antigens (CTAs) in breast cancer might enable the identification of new immunotherapy options, especially for triple-negative (TN) tumours, which lack expression of the conventional therapeutic targets oestrogen receptor, progesterone receptor, and human epidermal growth factor receptor 2. The aim of this study was to quantify the expression of MAGE-A and NY-ESO-1 CTAs in breast cancer, and relate this to known clinicopathological parameters. METHODS AND RESULTS: We surveyed MAGE-A and NY-ESO-1 expression in an unselected cohort of 367 breast tumours (of which 65 were TN), with accompanying clinical follow-up data, by using immunohistochemical analysis of tissue microarrays. Relevant to their potential as vaccine targets in breast cancer, MAGE-A was expressed in 13% of cases, and NY-ESO-1 in 3.8%, with the majority of tumours showing fairly homogeneous staining within individual tissue cores (~85% of cases with staining in >75% of tumour cells). Most NY-ESO-1-positive cases also expressed MAGE-A (P = 2.06 × 10-9 ), and both were strongly associated with the TN phenotype (P < 0.0001), with the most proliferative and poorly differentiated cases, in paticular, showing genomic instability. This was characterised by coexpression of c-Kit and TTK, and overexpression of p53. CONCLUSIONS: MAGE-A and NY-ESO-1 are frequently expressed in TN breast cancer (~47% and 17% of TN cases, respectively), suggesting that targeting them could be feasible in this patient group. Expression is reasonably homogeneous in positive cases, suggesting that immunohistochemical analysis of tissue biopsies would be a reliable companion biomarker.


Assuntos
Antígenos de Neoplasias/biossíntese , Biomarcadores Tumorais/análise , Antígenos Específicos de Melanoma/biossíntese , Proteínas de Membrana/biossíntese , Neoplasias de Mama Triplo Negativas/patologia , Adulto , Feminino , Humanos , Pessoa de Meia-Idade , Estudos Retrospectivos , Neoplasias de Mama Triplo Negativas/metabolismo
15.
Int J Mol Sci ; 18(1)2017 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-28098771

RESUMO

Brain metastases are highly-evolved manifestations of breast cancer arising in a unique microenvironment, giving them exceptional adaptability in the face of new extrinsic pressures. The incidence is rising in line with population ageing, and use of newer therapies that stabilise metastatic disease burden with variable efficacy throughout the body. Historically, there has been a widely-held view that brain metastases do not respond to circulating therapeutics because the blood-brain-barrier (BBB) restricts their uptake. However, emerging data are beginning to paint a more complex picture where the brain acts as a sanctuary for dormant, subclinical proliferations that are initially protected by the BBB, but then exposed to dynamic selection pressures as tumours mature and vascular permeability increases. Here, we review key experimental approaches and landmark studies that have charted the genomic landscape of breast cancer brain metastases. These findings are contextualised with the factors impacting on clonal outgrowth in the brain: intrinsic breast tumour cell capabilities required for brain metastatic fitness, and the neural niche, which is initially hostile to invading cells but then engineered into a tumour-support vehicle by the successful minority. We also discuss how late detection, abnormal vascular perfusion and interstitial fluid dynamics underpin the recalcitrant clinical behaviour of brain metastases, and outline active clinical trials in the context of precision management.


Assuntos
Neoplasias Encefálicas/secundário , Neoplasias da Mama/patologia , Evolução Clonal , Neoplasias da Mama/epidemiologia , Feminino , Humanos , Modelos Biológicos
16.
Int J Cancer ; 138(8): 1959-70, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-26619948

RESUMO

Periostin (POSTN), a secreted homodimeric protein that binds integrins αvß3, αvß5, and α6ß4, was originally found to be expressed in fetal tissues and in the adult upon injury particularly bone fractures due to its role in remodelling and repair. Recently it was found to be over-expressed in human breast cancer and a variety of other tumour types including head and neck squamous cell carcinoma, where its overexpression correlates with increased tumour invasion. Progress in studying its functional role in tumour pathogenesis has been hampered by the paucity of antibodies for its specific and sensitive detection. It has proven very difficult to obtain monoclonal antibodies (mAbs) against this highly conserved protein but we report here that combining infection of mice with lactate dehydrogenase elevating virus (LDV), a B cell activating arterivirus, with conjugation of human POSTN to ovalbumin as an immunogenic carrier, enabled us to develop six mAbs recognizing both human and mouse POSTN and inhibiting its binding to αvß3 integrin. Two of the mAbs, MPB4B1 and MPC5B4, were tested and found to inhibit POSTN-induced migration of human endothelial colony forming cells. All six mAbs recognized amino acids 136-51 (APSNEAWDNLDSDIRR) within the POSTN fascilin (FAS) 1-1 domain revealing the functional importance of this motif; this was further highlighted by the ability of aa 136-151 peptide to inhibit integrin-mediated cell migration. Immunohistochemistry using MPC5B4, indicated that breast tumour cell POSTN expression was a strong prognostic indicator, along with tumour size, lymph node, and human epidermal growth factor receptor 2 (HER2) status.


Assuntos
Anticorpos Monoclonais , Biomarcadores Tumorais/análise , Neoplasias da Mama/patologia , Moléculas de Adesão Celular/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Motivos de Aminoácidos , Animais , Especificidade de Anticorpos , Sítios de Ligação de Anticorpos , Neoplasias da Mama/metabolismo , Movimento Celular/fisiologia , Feminino , Humanos , Imuno-Histoquímica , Camundongos , Pessoa de Meia-Idade , Análise Serial de Tecidos
17.
Adv Anat Pathol ; 23(6): 356-367, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27740960

RESUMO

Our understanding of the natural history of breast cancer has evolved alongside technologies to study its genomic, transcriptomic, proteomic, and metabolomics landscapes. These technologies have helped decipher multiple molecular pathways dysregulated in breast cancer. First-generation 'omics analyses considered each of these dimensions individually, but it is becoming increasingly clear that more holistic, integrative approaches are required to fully understand complex biological systems. The 'omics represent an exciting era of discovery in breast cancer research, although important issues need to be addressed to realize the clinical utility of these data through precision cancer care. How can the data be applied to predict response to molecular-targeted therapies? When should treatment decisions be based on tumor genetics rather than histology? And with the sudden explosion of "big data" from large 'omics consortia and new precision clinical trials, how do we now negotiate evidence-based pathways to clinical translation through this apparent sea of opportunity? The aim of this review is to provide a broad overview of 'omics technologies used in breast cancer research today, the current state-of-play in terms of applying this new knowledge in the clinic, and the practical and ethical issues that will be central to the public discussion on the future of precision cancer care.


Assuntos
Neoplasias da Mama , Genômica/tendências , Metabolômica/tendências , Proteômica/tendências , Feminino , Humanos
18.
J Pathol ; 237(3): 363-78, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26172396

RESUMO

Treatment options for patients with brain metastases (BMs) have limited efficacy and the mortality rate is virtually 100%. Targeted therapy is critically under-utilized, and our understanding of mechanisms underpinning metastatic outgrowth in the brain is limited. To address these deficiencies, we investigated the genomic and transcriptomic landscapes of 36 BMs from breast, lung, melanoma and oesophageal cancers, using DNA copy-number analysis and exome- and RNA-sequencing. The key findings were as follows. (a) Identification of novel candidates with possible roles in BM development, including the significantly mutated genes DSC2, ST7, PIK3R1 and SMC5, and the DNA repair, ERBB-HER signalling, axon guidance and protein kinase-A signalling pathways. (b) Mutational signature analysis was applied to successfully identify the primary cancer type for two BMs with unknown origins. (c) Actionable genomic alterations were identified in 31/36 BMs (86%); in one case we retrospectively identified ERBB2 amplification representing apparent HER2 status conversion, then confirmed progressive enrichment for HER2-positivity across four consecutive metastatic deposits by IHC and SISH, resulting in the deployment of HER2-targeted therapy for the patient. (d) In the ERBB/HER pathway, ERBB2 expression correlated with ERBB3 (r(2) = 0.496; p < 0.0001) and HER3 and HER4 were frequently activated in an independent cohort of 167 archival BM from seven primary cancer types: 57.6% and 52.6% of cases were phospho-HER3(Y1222) or phospho-HER4(Y1162) membrane-positive, respectively. The HER3 ligands NRG1/2 were barely detectable by RNAseq, with NRG1 (8p12) genomic loss in 63.6% breast cancer-BMs, suggesting a microenvironmental source of ligand. In summary, this is the first study to characterize the genomic landscapes of BM. The data revealed novel candidates, potential clinical applications for genomic profiling of resectable BMs, and highlighted the possibility of therapeutically targeting HER3, which is broadly over-expressed and activated in BMs, independent of primary site and systemic therapy.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/secundário , Perfilação da Expressão Gênica/métodos , Genômica/métodos , Biomarcadores Tumorais/metabolismo , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/enzimologia , Análise Mutacional de DNA , Ativação Enzimática , Amplificação de Genes , Dosagem de Genes , Regulação Neoplásica da Expressão Gênica , Estudos de Associação Genética , Predisposição Genética para Doença , Humanos , Imuno-Histoquímica , Ligantes , Terapia de Alvo Molecular , Mutação , Fenótipo , Fosforilação , Medicina de Precisão , Valor Preditivo dos Testes , Inibidores de Proteínas Quinases/uso terapêutico , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo , Receptor ErbB-3/genética , Receptor ErbB-3/metabolismo , Receptor ErbB-4/genética , Receptor ErbB-4/metabolismo , Microambiente Tumoral
19.
J Exp Clin Cancer Res ; 42(1): 90, 2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-37072858

RESUMO

BACKGROUND: Despite overall improvement in breast cancer patient outcomes from earlier diagnosis and personalised treatment approaches, some patients continue to experience recurrence and incurable metastases. It is therefore imperative to understand the molecular changes that allow transition from a non-aggressive state to a more aggressive phenotype. This transition is governed by a number of factors. METHODS: As crosstalk with extracellular matrix (ECM) is critical for tumour cell growth and survival, we applied high throughput shRNA screening on a validated '3D on-top cellular assay' to identify novel growth suppressive mechanisms. RESULTS: A number of novel candidate genes were identified. We focused on COMMD3, a previously poorly characterised gene that suppressed invasive growth of ER + breast cancer cells in the cellular assay. Analysis of published expression data suggested that COMMD3 is normally expressed in the mammary ducts and lobules, that expression is lost in some tumours and that loss is associated with lower survival probability. We performed immunohistochemical analysis of an independent tumour cohort to investigate relationships between COMMD3 protein expression, phenotypic markers and disease-specific survival. This revealed an association between COMMD3 loss and shorter survival in hormone-dependent breast cancers and in particularly luminal-A-like tumours (ER+/Ki67-low; 10-year survival probability 0.83 vs. 0.73 for COMMD3-positive and -negative cases, respectively). Expression of COMMD3 in luminal-A-like tumours was directly associated with markers of luminal differentiation: c-KIT, ELF5, androgen receptor and tubule formation (the extent of normal glandular architecture; p < 0.05). Consistent with this, depletion of COMMD3 induced invasive spheroid growth in ER + breast cancer cell lines in vitro, while Commd3 depletion in the relatively indolent 4T07 TNBC mouse cell line promoted tumour expansion in syngeneic Balb/c hosts. Notably, RNA sequencing revealed a role for COMMD3 in copper signalling, via regulation of the Na+/K+-ATPase subunit, ATP1B1. Treatment of COMMD3-depleted cells with the copper chelator, tetrathiomolybdate, significantly reduced invasive spheroid growth via induction of apoptosis. CONCLUSION: Overall, we found that COMMD3 loss promoted aggressive behaviour in breast cancer cells.


Assuntos
Cobre , Neoplasias , Animais , Camundongos , Diferenciação Celular/genética , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Neoplasias/genética , Transdução de Sinais
20.
Diseases ; 10(1)2022 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-35225863

RESUMO

Primary malignancies of the lung, skin (melanoma), and breast have higher propensity for metastatic spread to the brain. Advances in molecular tumour profiling have aided the development of targeted therapies, stereotactic radiotherapy, and immunotherapy, which have led to some improvement in patient outcomes; however, the overall prognosis remains poor. Continued research to identify new prognostic and predictive biomarkers is necessary to further impact patient outcomes, as this will enable better risk stratification at the point of primary cancer diagnosis, earlier detection of metastatic deposits (for example, through surveillance), and more effective systemic treatments. Brain metastases exhibit considerable inter- and intratumoural heterogeneity-apart from distinct histology, treatment history and other clinical factors, the metastatic brain tumour microenvironment is incredibly variable both in terms of subclonal diversity and cellular composition. This review discusses emerging biomarkers; specifically, the biological context and potential clinical utility of tumour tissue biomarkers, circulating tumour cells, extracellular vesicles, and circulating tumour DNA.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA