RESUMO
The material design of functional "aero"-networks offers a facile approach to optical, catalytical, or and electrochemical applications based on multiscale morphologies, high large reactive area, and prominent material diversity. Here in this paper, the synthesis and structural characterization of a hybrid ß-Ga2 O3 /ZnGa2 O4 nanocomposite aero-network are presented. The nanocomposite networks are studied on multiscale with respect to their micro- and nanostructure by X-ray diffraction (XRD) and transmission electron microscopy (TEM) and are characterized for their photoluminescent response to UV light excitation and their electrochemical performance with Li-ion conversion reaction. The structural investigations reveal the simultaneous transformation of the precursor aero-GaN(ZnO) network into hollow architectures composed of ß-Ga2 O3 and ZnGa2 O4 nanocrystals with a phase ratio of ≈1:2. The photoluminescence of hybrid aero-ß-Ga2 O3 /ZnGa2 O4 nanocomposite networks demonstrates narrow band (λem = 504 nm) green light emission of ZnGa2 O4 under UV light excitation (λex = 300 nm). The evaluation of the metal-oxide network performance for electrochemical application for Li-ion batteries shows high initial capacities of ≈714 mAh g-1 at 100 mA g-1 paired with exceptional rate performance even at high current densities of 4 A g-1 with 347 mAh g-1 . This study provides is an exciting showcase example of novel networked materials and demonstrates the opportunities of tailored micro-/nanostructures for diverse applications a diversity of possible applications.
RESUMO
Fucoidans, sulfated polysaccharides from brown algae, possess multiple bioactivities in regard to osteogenesis, angiogenesis, and inflammation, all representing key molecular processes for successful bone regeneration. To utilize fucoidans in regenerative medicine, a delivery system is needed which temporarily immobilizes the polysaccharide at the injured site. Hydrogels have become increasingly interesting biomaterials for the support of bone regeneration. Their structural resemblance with the extracellular matrix, their flexible shape, and capacity to deliver bioactive compounds or stem cells into the affected tissue make them promising materials for the support of healing processes. Especially injectable hydrogels stand out due to their minimal invasive application. In the current study, we developed an injectable thermosensitive hydrogel for the delivery of fucoidan based on chitosan, collagen, and ß-glycerophosphate (ß-GP). Physicochemical parameters such as gelation time, gelation temperature, swelling capacity, pH, and internal microstructure were studied. Further, human bone-derived mesenchymal stem cells (MSC) and human outgrowth endothelial cells (OEC) were cultured on top (2D) or inside the hydrogels (3D) to assess the biocompatibility. We found that the sol-gel transition occurred after approximately 1 min at 37 °C. Fucoidan integration into the hydrogel had no or only a minor impact on the mentioned physicochemical parameters compared to hydrogels which did not contain fucoidan. Release assays showed that 60% and 80% of the fucoidan was released from the hydrogel after two and six days, respectively. The hydrogel was biocompatible with MSC and OEC with a limitation for OEC encapsulation. This study demonstrates the potential of thermosensitive chitosan-collagen hydrogels as a delivery system for fucoidan and MSC for the use in regenerative medicine.
Assuntos
Quitosana , Hidrogéis , Quitosana/química , Colágeno/química , Células Endoteliais , Humanos , Hidrogéis/química , PolissacarídeosRESUMO
Graphene oxide (GO) is a promising material for bone tissue engineering, but the validation of its molecular biological effects, especially in the context of clinically applied materials, is still limited. In this study, we compare the effects of graphene oxide framework structures (F-GO) and reduced graphene oxide-based framework structures (F-rGO) as scaffold material with a special focus on vascularization associated processes and mechanisms in the bone. Highly porous networks of zinc oxide tetrapods serving as sacrificial templates were used to create F-GO and F-rGO with porosities >99% consisting of hollow interconnected microtubes. Framework materials were seeded with human mesenchymal stem cells (MSC), and the cell response was evaluated by confocal laser scanning microscopy (CLSM), deoxyribonucleic acid (DNA) quantification, real-time polymerase chain reaction (RT-PCR), enzyme-linked immunosorbent assay (ELISA), and alkaline phosphatase activity (ALP) to define their impact on cellular adhesion, osteogenic differentiation, and secretion of vascular growth factors. F-GO based scaffolds improved adhesion and growth of MSC as indicated by CLSM and DNA quantification. Further, F-GO showed a better vascular endothelial growth factor (VEGF) binding capacity and improved cell growth as well as the formation of microvascular capillary-like structures in co-cultures with outgrowth endothelial cells (OEC). These results clearly favored non-reduced graphene oxide in the form of F-GO for bone regeneration applications. To study GO in the context of a clinically used implant material, we coated a commercially available xenograft (Bio-Oss® block) with GO and compared the growth of MSC in monoculture and in coculture with OEC to the native scaffold. We observed a significantly improved growth of MSC and formation of prevascular structures on coated Bio-Oss®, again associated with a higher VEGF binding capacity. We conclude that graphene oxide coating of this clinically used, but highly debiologized bone graft improves MSC cell adhesion and vascularization.
Assuntos
Grafite , Células-Tronco Mesenquimais , Adesão Celular , Diferenciação Celular , DNA/metabolismo , Células Endoteliais , Grafite/química , Humanos , Células-Tronco Mesenquimais/metabolismo , Osteogênese , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Fator A de Crescimento do Endotélio Vascular/metabolismoRESUMO
The aim of this study was to evaluate the influence of weight ratio, the shape of the precursor particles, and the application of a phosphate-monomer-containing primer on the mechanical properties of polymer infiltrated ceramic networks (PICNs) using zinc oxide. Two different types of zinc oxide particles were used as precursors to produce zinc oxide networks by sintering, each with two different densities resulting in two different weight ratios of the PICNs. For each of these different networks, two subgroups were built: one involving the application of a phosphate-monomer-containing primer prior to the infiltration of Bis-GMA/TEGDMA and one without. Elastic modulus and flexural strength were determined by using the three-point bending test. Vertical substance loss determined by the chewing simulation was evaluated with a laser scanning microscope. There was a statistically significant influence of the type of precursor particles on the flexural strength and in some cases on the elastic modulus. The application of a primer lead to a significant increase in the flexural strength and in most cases also in the elastic modulus. A higher weight ratio of zinc oxide led to a significantly higher elastic modulus. Few statistically significant differences were found for the vertical substance loss. By varying the shape of the particles and the weight fraction of zinc oxide, the mechanical properties of the investigated PICN can be controlled. The use of a phosphate-monomer-containing primer strengthens the bond between the infiltrated polymer and the zinc oxide, thus increasing the strength of the composite.
RESUMO
Solid-state fabricated carbon nanotube (CNT) sheets have shown promise as thermoacoustic (TA) sound generators, emitting tunable sound waves across a broad frequency spectrum (1-105 Hz) due to their ultralow specific heat capacity. However, their applications as underwater TA sound generators are limited by the reduced mechanical strength of CNT sheets in aqueous environments. In this study, we present a mechanically robust underwater TA device constructed from a three-dimensional (3D) tetrapodal assembly of carbon nanotubes (t-CNTs). These structures feature a high porosity (>99.9%) and a double-hollowed network of well-interconnected CNTs. We systematically explore the impact of different dimensions of t-CNTs and various annealing procedures on sound generation performance. Furnace-annealed t-CNTs, in contrast to directly resistive Joule heating annealing, provide superior, continuous, and homogeneous hydrophobicity across the surface of bulk t-CNTs. As a result, the t-CNTs-based underwater TA device demonstrates stable, smooth, and broad-spectrum sound generation within the frequency range of 1 × 102 to 1 × 104 Hz, along with a weak resonance response. Furthermore, these devices exhibit enhanced and more stable sound generation performance at nonresonance frequencies compared to regular CNT-based devices. This study contributes to advancing the development of underwater TA devices with characteristics such as being nonresonant, high-performing, flexible, elastically compressible, and reliable, enabling operation across a broad frequency range.
RESUMO
Conversion of light into heat is essential for a broad range of technologies such as solar thermal heating, catalysis and desalination. Three-dimensional (3D) carbon nanomaterial-based aerogels have been shown to hold great promise as photothermal transducer materials. However, until now, their light-to-heat conversion is limited by near-surface absorption, resulting in a strong heat localization only at the illuminated surface region, while most of the aerogel volume remains unused. We present a fabrication concept for highly porous (>99.9%) photothermal hybrid aeromaterials, which enable an ultrarapid and volumetric photothermal response with an enhancement by a factor of around 2.5 compared to the pristine variant. The hybrid aeromaterial is based on strongly light-scattering framework structures composed of interconnected hollow silicon dioxide (SiO2) microtubes, which are functionalized with extremely low amounts (in order of a few µg cm-3) of reduced graphene oxide (rGO) nanosheets, acting as photothermal agents. Tailoring the density of rGO within the framework structure enables us to control both light scattering and light absorption and thus the volumetric photothermal response. We further show that by rapid and repeatable gas activation, these transducer materials expand the field of photothermal applications, like untethered light-powered and light-controlled microfluidic pumps and soft pneumatic actuators.
RESUMO
Hydrogel-based soft actuators can operate in sensitive environments, bridging the gap of rigid machines interacting with soft matter. However, while stimuli-responsive hydrogels can undergo extreme reversible volume changes of up to ≈90%, water transport in hydrogel actuators is in general limited by their poroelastic behavior. For poly(N-isopropylacrylamide) (PNIPAM) the actuation performance is even further compromised by the formation of a dense skin layer. Here it is shown, that incorporating a bioinspired microtube graphene network into a PNIPAM matrix with a total porosity of only 5.4% dramatically enhances actuation dynamics by up to ≈400% and actuation stress by ≈4000% without sacrificing the mechanical stability, overcoming the water transport limitations. The graphene network provides both untethered light-controlled and electrically powered actuation. It is anticipated that the concept provides a versatile platform for enhancing the functionality of soft matter by combining responsive and 2D materials, paving the way toward designing soft intelligent matter.
RESUMO
Tetrapodal zinc oxide (t-ZnO) is used to fabricate polymer composites for many different applications ranging from biomedicine to electronics. In recent times, macroscopic framework structures from t-ZnO have been used as a versatile sacrificial template for the synthesis of multi-scaled foam structures from different nanomaterials such as graphene, hexagonal boron nitride or gallium nitride. Many of these fabrication methods rely on wet-chemical coating processes using nanomaterial dispersions, leading to a strong interest in the actual coating mechanism and factors influencing it. Depending on the type of medium (e.g. solvent) used, different results regarding the homogeneity of the nanomaterial coating can be achieved. In order to understand how a medium influences the coating behavior, the evaporation process of water and ethanol is investigated in this work using in situ synchrotron radiation-based micro computed tomography (SRµCT). By employing propagation-based phase contrast imaging, both the t-ZnO network and the medium can be visualized. Thus, the evaporation process can be monitored non-destructively in three dimensions. This investigation showed that using a polar medium such as water leads to uniform evaporation and, by that, a homogeneous coating of the entire network.
RESUMO
Localized therapy of the highly malignant brain tumor glioblastoma multiforme (GBM) could help to drastically improve the treatment efficiency and increase the patient's median survival. Here, a macroscopic PDMS matrix composed of interconnected microchannels for tailored drug release and localized GBM therapy is introduced. Based on a simple bottom-up fabrication method using a highly versatile sacrificial template, the presented strategy solves the scaling problem associated with the previously developed microchannel-based drug delivery systems, which were limited to two dimensions due to the commonly employed top-down microfabrication methods. Additionally, tailoring of the microchannel density, the fraction of drug-releasing microchannels and the macroscopic size of the drug delivery systems enabled precise adjustment of the drug release kinetics for more than 10 days. As demonstrated in a long-term GBM in vitro model, the release kinetics of the exemplarily chosen GBM drug AT101 could be tailored by variation of the microchannel density and the initial drug concentration, leading to diffusion-controlled AT101 release. Adapting a previously developed GBM treatment plan based on a sequential stimulation with AT101, measured anti-tumorigenic effects of free versus PDMS-released AT101 were comparable in human GBM cells and demonstrated efficient biological activity of PDMS-released AT101.
Assuntos
Neoplasias Encefálicas , Glioblastoma , Neoplasias Encefálicas/tratamento farmacológico , Linhagem Celular Tumoral , Liberação Controlada de Fármacos , Glioblastoma/tratamento farmacológico , Humanos , SiliconesRESUMO
Despite tremendous efforts toward fabrication of three-dimensional macrostructures of two-dimensional (2D) materials, the existing approaches still lack sufficient control over microscopic (morphology, porosity, pore size) and macroscopic (shape, size) properties of the resulting structures. In this work, a facile fabrication method for the wet-chemical assembly of carbon 2D nanomaterials into macroscopic networks of interconnected, hollow microtubes is introduced. As demonstrated for electrochemically exfoliated graphene, graphene oxide, and reduced graphene oxide, the approach allows for the preparation of highly porous (> 99.9%) and lightweight (<2 mg cm-3) aeromaterials with tailored porosity and pore size as well as tailorable shape and size. The unique tubelike morphology with high aspect ratio enables ultralow-percolation-threshold graphene composites (0.03 S m-1, 0.05 vol%) which even outperform most of the carbon nanotube-based composites, as well as highly conductive aeronetworks (8 S m-1, 4 mg cm-3). On top of that, long-term compression cycling of the aeronetworks demonstrates remarkable mechanical stability over 10â¯000 cycles, even though no chemical cross-linking is employed. The developed strategy could pave the way for fabrication of various macrostructures of 2D nanomaterials with defined shape, size, as well as micro- and nanostructure, crucial for numerous applications such as batteries, supercapacitors, and filters.