RESUMO
Little is known about the dynamics of concentrations and carbon isotope ratios of individual carbohydrates in leaves in response to climatic and physiological factors. Improved knowledge of the isotopic ratio in sugars will enhance our understanding of the tree ring isotope ratio and will help to decipher environmental conditions in retrospect more reliably. Carbohydrate samples from larch (Larix gmelinii) needles of two sites in the continuous permafrost zone of Siberia with differing growth conditions were analysed with the Compound-Specific Isotope Analysis (CSIA). We compared concentrations and carbon isotope values (δ(13) C) of sucrose, fructose, glucose and pinitol combined with phenological data. The results for the variability of the needle carbohydrates show high dynamics with distinct seasonal characteristics between and within the studied years with a clear link to the climatic conditions, particularly vapour pressure deficit. Compound-specific differences in δ(13) C values as a response to climate were detected. The δ(13) C of pinitol, which contributes up to 50% of total soluble carbohydrates, was almost invariant during the whole growing season. Our study provides the first in-depth characterization of compound-specific needle carbohydrate isotope variability, identifies involved mechanisms and shows the potential of such results for linking tree physiological responses to different climatic conditions.
Assuntos
Metabolismo dos Carboidratos , Larix/metabolismo , Mudança Climática , Meio Ambiente , Frutose/química , Frutose/metabolismo , Glucose/química , Glucose/metabolismo , Inositol/análogos & derivados , Inositol/química , Inositol/metabolismo , Larix/fisiologia , Sibéria , Sacarose/química , Sacarose/metabolismoRESUMO
This is the first Europe-wide comprehensive assessment of the climatological and physiological information recorded by hydrogen isotope ratios in tree-ring cellulose (δ2Hc) based on a unique collection of annually resolved 100-year tree-ring records of two genera (Pinus and Quercus) from 17 sites (36°N to 68°N). We observed that the high-frequency climate signals in the δ2Hc chronologies were weaker than those recorded in carbon (δ13Cc) and oxygen isotope signals (δ18Oc) but similar to the tree-ring width ones (TRW). The δ2Hc climate signal strength varied across the continent and was stronger and more consistent for Pinus than for Quercus. For both genera, years with extremely dry summer conditions caused a significant 2H-enrichment in tree-ring cellulose. The δ2Hc inter-annual variability was strongly site-specific, as a result of the imprinting of climate and hydrology, but also physiological mechanisms and tree growth. To differentiate between environmental and physiological signals in δ2Hc, we investigated its relationships with δ18Oc and TRW. We found significant negative relationships between δ2Hc and TRW (7 sites), and positive ones between δ2Hc and δ18Oc (10 sites). The strength of these relationships was nonlinearly related to temperature and precipitation. Mechanistic δ2Hc models performed well for both genera at continental scale simulating average values, but they failed on capturing year-to-year δ2Hc variations. Our results suggest that the information recorded by δ2Hc is significantly different from that of δ18Oc, and has a stronger physiological component independent from climate, possibly related to the use of carbohydrate reserves for growth. Advancements in the understanding of 2H-fractionations and their relationships with climate, physiology, and species-specific traits are needed to improve the modelling and interpretation accuracy of δ2Hc. Such advancements could lead to new insights into trees' carbon allocation mechanisms, and responses to abiotic and biotic stress conditions.
Assuntos
Celulose , Árvores , Isótopos de Carbono/análise , Florestas , Hidrogênio , Isótopos de Oxigênio/análiseRESUMO
Newly developed millennial δ13C larch tree-ring chronology from Siberia allows reconstruction of summer (July) vapor pressure deficit (VPD) changes in a temperature-limited environment. VPD increased recently, but does not yet exceed the maximum values reconstructed during the Medieval Warm Anomaly. The most humid conditions in the Siberian North were recorded in the Early Medieval Period and during the Little Ice Age. Increasing VPD under elevated air temperature affects the hydrology of these sensitive ecosystems by greater evapotranspiration rates. Further VPD increases will significantly affect Siberian forests most likely leading to drought and forest mortality even under additional access of thawed permafrost water. Adaptation strategies are needed for Siberian forest ecosystems to protect them in a warming world.
RESUMO
Stable carbon isotope ratios (delta(13)C) and leaf conductance (g(s)) were measured (2002, 2003) in Holcus lanatus L., Plantago lanceolata L. Ranunculus friesianus (Jord.), and Trifolium pratense L. at two levels of ozone (O(3)) with or without irrigation. In non-irrigated control plots, R. friesianus showed the least negative delta(13)C, and the smallest response to the treatments. Irrigation caused more negative delta(13)C, especially in H. lanatus. Irrespective of irrigation, O(3) increased delta(13)C in relationship to a decrease in g(s) in P. lanceolata and T. pratense. The strongest effect of O(3) on delta(13)C occurred in the absence of irrigation, suggesting that under field conditions lack of moisture in the top soil does not always lead to protection from O(3) uptake. It is concluded that in species such as T. pratense plants can maintain stomatal O(3) uptake during dry periods when roots can reach deeper soil layers where water is not limiting.
Assuntos
Isótopos de Carbono/análise , Oxidantes Fotoquímicos/toxicidade , Ozônio/toxicidade , Folhas de Planta/fisiologia , Agricultura/métodos , Ecossistema , Holcus/química , Holcus/fisiologia , Oxidantes Fotoquímicos/farmacocinética , Ozônio/farmacocinética , Folhas de Planta/química , Plantago/química , Plantago/fisiologia , Ranunculus/química , Ranunculus/fisiologia , Trifolium/química , Trifolium/fisiologia , Água/fisiologia , Tempo (Meteorologia)RESUMO
Significant gaps still exist in our knowledge about post-photosynthetic leaf level and downstream metabolic processes and isotopic fractionations. This includes their impact on the isotopic climate signal stored in the carbon isotope composition (δ(13)C) of leaf assimilates and tree rings. For the first time, we compared the seasonal δ(13)C variability of leaf sucrose with intra-annual, high-resolution δ(13)C signature of tree rings from larch (Larix gmelinii Rupr.). The trees were growing at two sites in the continuous permafrost zone of Siberia with different growth conditions. Our results indicate very similar low-frequency intra-seasonal trends of the sucrose and tree ring δ(13)C records with little or no indication for the use of 'old' photosynthates formed during the previous year(s). The comparison of leaf sucrose δ(13)C values with that in other leaf sugars and in tree rings elucidates the cause for the reported (13)C-enrichment of sink organs compared with leaves. We observed that while the average δ(13)C of all needle sugars was 1.2 more negative than δ(13)C value of wood, the δ(13)C value of the transport sugar sucrose was on an average 1.0 more positive than that of wood. Our study shows a high potential of the combined use of compound-specific isotope analysis of sugars (leaf and phloem) with intra-annual tree ring δ(13)C measurements for deepening our understanding about the mechanisms controlling the isotope variability in tree rings under different environmental conditions.
Assuntos
Carboidratos/química , Carbono/metabolismo , Larix/crescimento & desenvolvimento , Larix/metabolismo , Desenvolvimento Vegetal/fisiologia , Folhas de Planta/química , Metabolismo dos Carboidratos , Carbono/química , Isótopos de CarbonoRESUMO
We investigated the relationship between the δ13C signal in current-year and 1-year-old needle bulk material, starch extracts, and early- or late-wood in mature spruce trees (Picea abies) to identify the modifying influence of climatic conditions on the different δ13C signals. Seasonal patterns of δ13C were determined in total bulk needle material from 1998 to 2000, and in acid soluble starch extracts in 1999 and 2000, and δ13C values of early- and late-wood were measured for the years 1991-2000. δ13C of bulk needle material was most enriched in spring with a trend towards depletion in the course of the season. Current-year needles showed a more distinct seasonal pattern in δ13C compared to 1-year-old needles. Seasonal trends in bulk material and starch were similar, but the highly enriched signal in spring could not be fully explained by the influence of the δ13C values of starch (weighted with the corresponding starch amounts). δ13C of starch in 1-year-old needles, and to a lesser extent of current-year needles, correlated with δ13C of early-wood, indicating a transfer of the isotopic signal. In addition, early-wood δ13C corresponded weakly to winter precipitation. In the summer, δ13C of total bulk needle material and starch showed no relation to the late-wood δ13C signature. Late-wood δ13C, however, related to global radiation, relative humidity and temperature, with more enriched values corresponding to warmer and drier conditions. We conclude that the signature of early-wood is determined more by biochemical fractionation, e.g. during starch formation, than by climatic conditions, which exert only a minor influence and are reflected in the isotopic signal of late-wood.
RESUMO
Based on measurements of δ18O and δ13C in organic matter of C3-plants, we have developed a conceptual model that gives insight into the relationship between stomatal conductance (g l) and photosynthetic capacity (A max) resulting from differing environmental constraints and plant-internal factors. This is a semi-quantitative approach to describing the long-term effects of environmental factors on CO2 and H2O gas exchange, whereby we estimate the intercellular CO2 concentration (c i) from δ13C and the air humidity from δ18O. Assuming that air humidity is an important factor influencing g l, the model allows us to distinguish whether differences in c i are caused by a response of g l or of A max. As an application of the model we evaluated the isotope data from three species in plots differing in intensity of land use (hay meadows and abandoned areas) at three sites along a south north transect in the Eastern Alps. We found three different δ18O-δ13C response patterns in native and planted grassland species (cultivated in the greenhouse). After preliminary confirmation by gas-exchange measurements we conclude that the proposed model is a promising tool for deriving carbon water relations in different functional groups from δ18O and δ13C isotope data.
RESUMO
The 15N ratio of nitrogen oxides (NOx) emitted from vehicles, measured in the air adjacent to a highway in the Swiss Middle Land, was very high [δ15N(NO2) = +5.7]. This high 15N abundance was used to estimate long-term NO2 dry deposition into a forest ecosystem by measuring δ15N in the needles and the soil of potted and autochthonous spruce trees [Picea abies (L.) Karst] exposed to NO2 in a transect orthogonal to the highway. δ15N in the current-year needles of potted trees was 2.0 higher than that of the control after 4 months of exposure close to the highway, suggesting a 25% contribution to the N-nutrition of these needles. Needle fall into the pots was prevented by grids placed above the soil, while the continuous decomposition of needle litter below the autochthonous trees over previous years has increased δ15N values in the soil, resulting in parallel gradients of δ15N in soil and needles with distance from the highway. Estimates of NO2 uptake into needles obtained from the δ15N data were significantly correlated with the inputs calculated with a shoot gas exchange model based on a parameterisation widely used in deposition modelling. Therefore, we provide an indication of estimated N inputs to forest ecosystems via dry deposition of NO2 at the receptor level under field conditions.
RESUMO
Human malignant tumors, such as non-small lung, breast, ovarian, head and neck, prostate, stomach and colorectal cancers express a number of growth factor receptors (e.g. EGFR or EGFR family members) that are regulated by tumor hypoxia and contribute to tumor growth and failure of cytotoxic therapy. Paclitaxel and docetaxel are indispensable substances in the treatment of these tumors. Despite the active clinical use of taxanes, little is known about their cytotoxic activity under hypoxia. The aim of the present work was to compare the cytotoxic effect of taxanes, paclitaxel and docetaxel on the EGFR-expressing carcinoma cell lines A431, MDA-MB-231 and NCI-H358 under normoxic and hypoxic conditions. The two taxanes caused different cell cycle distribution and varying aneuploid cell formation under hypoxia. EGFR-overexpressing carcinoma cells showed hypoxia to severely affect the cytotoxicity of paclitaxel, whereas docetaxel preserved its tumor cell-killing activity even at lowest concentrations (0.5 nM), as was observed for both taxanes under normoxia.
Assuntos
Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Receptores ErbB/efeitos dos fármacos , Paclitaxel/farmacologia , Taxoides/farmacologia , Apoptose/fisiologia , Ciclo Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Docetaxel , Resistencia a Medicamentos Antineoplásicos , Feminino , Humanos , Hipóxia , Masculino , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Probabilidade , Valores de Referência , Sensibilidade e Especificidade , Células Tumorais CultivadasRESUMO
Nitrate consumption in aquifers may result from several biogenic and abiotic processes such as denitrification, assimilatory NO3- reduction, dissimilatory NO3- reduction to ammonium (DNRA), or abiotic NO3- (or NO2-) reduction. The objectives of this study were to investigate the fate of NO3- in a petroleum-contaminated aquifer, and to assess the feasibility of using single-well push-pull tests (PPTs) in combination with 15N isotope and C2H2 inhibition methods for the quantification of processes contributing to NO3- consumption. Three consecutive PPTs were performed in a monitoring well of a heating oil-contaminated aquifer in Erlen, Switzerland. For each test, we injected 500 l of test solution containing 0.5 mM Br- as conservative tracer and either 0.5 mM unlabeled NO3- or approximately 0.3 mM 15N-labeled NO3- as reactant. Test solutions were sparged during preparation and injection with either N2, Ar or 10% C2H2 in Ar. After an initial incubation period of 1.5-3.2 h, we extracted the test solution/groundwater mixtures from the same location and measured concentrations of relevant species including Br-, NO3-, NO2-, N2O, N2, and NH4+. In addition, we determined the 15N contents of N2, N2O, NH4+, and suspended biomass from 15N/14N isotope-ratio measurements. Average total test duration was 50.5 h. First-order rate coefficients (k) were computed from measured NO3- consumption, N2-15N production and N2O-15N production. From measured NO3- consumption we obtained nearly identical estimates of k for all PPTs with small 95% confidence intervals, indicating good reproducibility and accuracy for the tests. Estimates of k from N2-15N production and N2O-15N production indicated that denitrification accounted for only 46-49% of observed NO3- consumption. Production of N2-15N in the presence of C2H2 was observed during one of the tests, which may be an indicator for abiotic NO3- reduction. Moreover, 15N isotope analyses confirmed occurrence of assimilatory NO3- reduction (0.58 at.% 15N in suspended biomass) and to a smaller extent DNRA (up to 4 at.% 15N in NH4+). Our results indicated that the combination of PPTs, 15N-isotope and C2H2 inhibition methods provided improved information on denitrification as well as alternative fates of NO3- in this aquifer.
Assuntos
Nitratos/química , Petróleo , Poluentes Químicos da Água , Acetileno/análise , Humanos , Radioisótopos de Nitrogênio/análise , OxirreduçãoRESUMO
Natural variations in the oxygen isotope ratio 18O/16O are occurring in the hydrological cycle as a result of isotope fractionations during evaporation and condensation. These processes imprint a valuable climatic signal in the precipitation, which is stored in ice caps as well as in the cellulose of trees. Recent developments in the continuous-flow analysis of 18O/16O of organic matter now enable a systematic application of this method in tree rings. It becomes possible to build maps of the past oxygen isotope distribution in continental areas, yielding important information on regional climate changes. In this paper, the factors influencing the isotope composition of tree rings are discussed with an example from trees in northern Eurasia. Oxygen isotope values of Larix, Picea and Pinus trees were measured over a large climatic gradient extending from Norway to Siberia. The spatial isotope variations were highly correlated to the annual mean temperature (r2 = 0.84), whereby the slope of the corresponding regression line was 0.35%/degrees C. When considering the changes in 18O/16O during the 20th century, not only the temperature, but also changes in the precipitation patterns have to be considered, in particular the observed increase in the amount of winter precipitation.
Assuntos
Clima , Oxigênio/análise , Árvores/genética , Ásia , Celulose/química , Monitoramento Ambiental/métodos , Europa (Continente) , Gelo , Isótopos de Oxigênio/análise , Chuva , Temperatura , Árvores/químicaRESUMO
We determined vertical oxygen isotope gradients of leaf organic matter for a grassland in Switzerland and a mountain beech forest (Fagus sylvatica) in Northern Italy. A distinctly positive (18)O/(16)O gradient with height above ground was found for the grassland (7.9/1000 m(-1), p < 0.001), whereas the gradient was negative for the forest (-0.077/1000 m(-1), p < 0.001). The results are consistent with microclimatic measurements, although large isotope variations between the species have to be taken into account for the grassland. A conceptual scheme is shown which relates the isotope enrichment to the canopy density, considering the effects of transpiration and canopy structure. We conclude that the analysis of the within canopy variation in delta(18)O of organic matter can be used to provide long-term estimates of leaf water isotope composition, thus improving existing isotope methods to determine the gas-exchange between vegetation and atmosphere.
Assuntos
Ecossistema , Fagaceae/fisiologia , Isótopos de Oxigênio/análise , Folhas de Planta/química , Atmosfera , Itália , MicroclimaRESUMO
A wet oxidation method for the compound-specific determination of stable carbon isotopes (delta(13)C) of organic acids in the gas and aerosol phase, as well as of water-soluble organic carbon (WSOC), is presented. Sampling of the organic acids was done using a wet effluent diffusion denuder/aerosol collector (WEDD/AC) coupled to an ion chromatography (IC) system. The method allows for compound-specific stable carbon isotope analysis by collecting different fractions of organic acids at the end of the IC system using a fraction collector. delta(13)C analyses of organic acids were conducted by oxidizing the organic acids with sodium persulfate at a temperature of 100 degrees C and determining the delta(13)C value of the resulting carbon dioxide (CO(2)) with an isotope ratio mass spectrometer. In addition, analysis of delta(13)C of the WSOC was performed for particulate carbon collected on aerosol filters. The WSOC was extracted from the filters using ultrapure water (MQ water), and the dissolved organic carbon was oxidized to CO(2) using the oxidation method. The wet oxidation method has an accuracy of 0.5 per thousand with a precision of +/-0.4 per thousand and provides a quantitative result for organic carbon with a detection limit of 150 ng of carbon.
Assuntos
Ácidos/química , Aerossóis/análise , Atmosfera/química , Dióxido de Carbono/análise , Isótopos de Carbono/análise , Monitoramento Ambiental/métodos , Cromatografia Gasosa-Espectrometria de Massas/métodos , Compostos Orgânicos/análise , Carbono/análiseRESUMO
This study tested the hypothesis that purebred Boran (Bos indicus) cows and crossbreds of Boran and Holstein respond differently to long-term changes of feeding level in nutrient partitioning to milk and body fat stores. A total of 27 cows of these two genotypes were subjected either to a low or a high feeding level from their first oestrus as heifers until birth of their third calf. Half of the cows of each genotype were then switched to the other feeding level during the third reproduction cycle. If at all, Boran cows responded to a change in the feeding level almost exclusively by a corresponding change in body weight but not milk yield. Crossbred cows kept continuously on the low feeding level had a lower milk yield than those continuously fed the high level, but lost similar amounts of body weight. In crossbred cows, changing the feeding level from high to low was accompanied by a mobilization of body reserves, whereas a change from low to high level resulted mostly in an increase in milk yield. Certain other genotype differences in metabolic response were obvious from differences in body composition and from the metabolic profile either reflected in blood (particularly insulin-like growth factor I) or in adipose tissue (lipoprotein lipase). Reproductive performance differed between genotypes, with shorter lactations associated with earlier occurrences of the first oestrus in the Boran cows. Generally, feeding history appeared to have at least as much influence on energy partitioning as the actual feeding level. In conclusion, purebred Boran cows seem to react to long-term food fluctuations mainly by mobilizing and restoring body fat reserves, whereas cows crossbred with Holstein tend to spend extra energy preferentially for milk production.
Assuntos
Ração Animal , Fenômenos Fisiológicos da Nutrição Animal , Bovinos/fisiologia , Cruzamentos Genéticos , Lactação/fisiologia , Tecido Adiposo/metabolismo , Animais , Composição Corporal/fisiologia , Bovinos/genética , Bovinos/metabolismo , Feminino , Genótipo , Humanos , Lactação/genética , Lactação/metabolismo , Masculino , Leite/metabolismoRESUMO
The relative composition of stable carbon isotopes, delta(13)C, was determined in flag leaves and grain of spring wheat (Triticum aestivum L. cv Albis) grown in open-top field fumigation chambers and exposed to different O(3) levels during the growing season. The aim of the study was to establish exposure-response relationships for the radiation-weighted seasonal mean O(3) concentration and delta(13)C (relative deviation of the (13)C/(12)C ratio) values of the two plant parts. Samples were collected at harvest in 1986, 1987, and 1988. With increasing O(3) concentration, delta(13)C values increased (became less negative) proportionally. Year to year delta(13)C differences at equivalent O(3) concentrations were small. The shift in delta(13)C caused by O(3) was more pronounced in grain than in leaves. According to models of (13)C discrimination in C(3) plants, these results indicate increasing limitation of photosynthesis by CO(2) diffusion relative to limitation by carboxylation with increasing O(3) exposure. This conclusion is not in agreement with results from gas exchange analysis. Water use efficiency in green flag leaves tended to decrease with increasing O(3), indicating a dominating effect of O(3) on CO(2) carboxylation.
RESUMO
High-N(2)-fixing activities of Frankia populations in root nodules on Alnus glutinosa improve growth performance of the host plant. Therefore, the establishment of active, nodule-forming populations of Frankia in soil is desirable. In this study, we inoculated Frankia strains of Alnus host infection groups I, IIIa, and IV into soil already harboring indigenous populations of infection groups (IIIa, IIIb, and IV). Then we amended parts of the inoculated soil with leaf litter of A. glutinosa and kept these parts of soil without host plants for several weeks until they were spiked with [(15)N]NO(3) and planted with seedlings of A. glutinosa. After 4 months of growth, we analyzed plants for growth performance, nodule formation, specific Frankia populations in root nodules, and N(2) fixation rates. The results revealed that introduced Frankia strains incubated in soil for several weeks in the absence of plants remained infective and competitive for nodulation with the indigenous Frankia populations of the soil. Inoculation into and incubation in soil without host plants generally supported subsequent plant growth performance and increased the percentage of nitrogen acquired by the host plants through N(2) fixation from 33% on noninoculated, nonamended soils to 78% on inoculated, amended soils. Introduced Frankia strains representing Alnus host infection groups IIIa and IV competed with indigenous Frankia populations, whereas frankiae of group I were not found in any nodules. When grown in noninoculated, nonamended soil, A. glutinosa plants harbored Frankia populations of only group IIIa in root nodules. This group was reduced to 32% +/- 23% (standard deviation) of the Frankia nodule populations when plants were grown in inoculated, nonamended soil. Under these conditions, the introduced Frankia strain of group IV was established in 51% +/- 20% of the nodules. Leaf litter amendment during the initial incubation in soil without plants promoted nodulation by frankiae of group IV in both inoculated and noninoculated treatments. Grown in inoculated, amended soils, plants had significantly lower numbers of nodules infected by group IIIa (8% +/- 6%) than by group IV (81% +/- 11%). On plants grown in noninoculated, amended soil, the original Frankia root nodule population represented by group IIIa of the noninoculated, nonamended soil was entirely exchanged by a Frankia population belonging to group IV. The quantification of N(2) fixation rates by (15)N dilution revealed that both the indigenous and the inoculated Frankia populations of group IV had a higher specific N(2)-fixing capacity than populations belonging to group IIIa under the conditions applied. These results show that through inoculation or leaf litter amendment, Frankia populations with high specific N(2)-fixing capacities can be established in soils. These populations remain infective on their host plants, successfully compete for nodule formation with other indigenous or inoculated Frankia populations, and thereby increase plant growth performance.
Assuntos
Actinomycetales/crescimento & desenvolvimento , Folhas de Planta/microbiologia , Raízes de Plantas/microbiologia , Rosales/microbiologia , Microbiologia do Solo , Actinomycetales/patogenicidade , Rosales/crescimento & desenvolvimento , SimbioseRESUMO
Gastrin/CCK-2 receptors are overexpressed in a number of tumors such as medullary thyroid cancer (MTC) and small cell lung cancer (SCLC). Recently [D-Glu1]-minigastrin (MG) has been radiolabeled with 131I, 111In, and 90Y and evaluated in patients. This study describes the labeling and evaluation of MG with technetium-99m using two different labeling approaches: HYNIC as bifunctional coupling agent and (Nalpha-His)Ac as tridentate ligand for 99mTc(CO3) labeling. Labeling was perfomed at high specific activities using Tricine and EDDA as coligands for HYNIC-MG and [99mTc(OH2)3(CO)3]+ for (Nalpha-His)Ac-MG. Stability experiments were carried out by reversed phase HPLC analysis in PBS, serum, histidine, and cysteine solutions, as well as rat liver and kidney homogenates. Receptor binding and internalization experiments were performed using CCK-2 receptor positive AR42J rat pancreatic tumor cells. Biodistribution experiments were carried out in nude mice carrying AR42J tumors by injection of 99mTc-labeled peptide with or without coinjection of 50 microg of minigastrin I human (MGh). HYNIC-MG and (Nalpha-His)Ac-MG could be radiolabeled at high specific activities (>1 Ci/micromol). For HYNIC-MG, high labeling yields (>95%) were achieved using Tricine and EDDA as coligands. Stability experiments of all 99mTc-labeled conjugates revealed a high stability of the label in PBS and serum as well as toward challenge with histidine and cysteine. Incubation in kidney homogenates resulted in a rapid degradation of all conjugates with <10% intact peptide after 60 min at 37 degrees C, with no considerable differences between the radiolabeled conjugates; a somewhat lower degradation rate was seen in liver homogenates. Protein binding varied considerably with lowest levels for 99mTc-EDDA/HYNIC-MG. Competition experiments of unlabeled conjugates on AR42J membranes versus [125I-Tyr12]-gastrin I showed high CCK-2 receptor affinity for all conjugates under study. Internalization behavior was very rapid for all radiolabeled conjugates in the order of 99mTc-(Nalpha-His)Ac-MG > 99mTc-EDDA/HYNIC-MG > 99mTc-Tricine/HYNIC-MG. In tumor-bearing nude mice the highest tumor-uptake was observed with 99mTc-EDDA/HYNIC-MG (8.1%ID/g) followed by 99mTc-Tricine/HYNIC-MG (2.2%ID/g) and 99mTc-(Nalpha-His)Ac-MG (1.2%ID/g) which correlated with kidney uptake (101.0%ID/g, 53.8%ID/g, 1.8%ID/g respectively). In this series of compounds 99mTc-EDDA/HYNIC-MG with its very high tumor/organ ratios except for kidneys seems to be the most promising agent to target CCK-2 receptors. Despite promising properties concerning receptor binding, internalization, and in vitro stability, 99mTc-(Nalpha-His)Ac-MG showed low tumor uptake in vivo.