Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-31907189

RESUMO

Methicillin-resistant Staphylococcus aureus (MRSA) opportunistic infections are a major health burden. Decolonization of hospitalized patients with mupirocin (MUP) has reduced the incidence of infection but has led to MUP resistance. DIBI is a developmental-stage anti-infective agent that sequesters bacterial iron and bolsters innate host iron-withdrawal defenses. Clinical isolates possessing low, high, or no MUP resistance all had similarly high susceptibilities to DIBI. Intranasal DIBI reduced nares bacterial burdens in mice to the same extent as MUP. No resistance was found after exposure to DIBI.


Assuntos
Antibacterianos/farmacologia , Ferro/metabolismo , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Mupirocina/farmacologia , Farmacorresistência Bacteriana , Staphylococcus aureus Resistente à Meticilina/metabolismo , Testes de Sensibilidade Microbiana
2.
Artigo em Inglês | MEDLINE | ID: mdl-31209004

RESUMO

Acinetobacter baumannii is a major cause of nosocomial infections especially hospital-acquired pneumonia. This bacterium readily acquires antibiotic resistance traits and therefore, new treatment alternatives are urgently needed. The virulence of A. baumannii linked to iron acquisition suggests a potential for new anti-infectives that target its iron acquisition. DIBI, a 3-hydroxypyridin-4-one chelator, is a purpose-designed, iron-sequestering antimicrobial that has shown promise for treating microbial infection. DIBI was investigated for its in vitro and in vivo activities against clinical A. baumannii isolates. DIBI was inhibitory for all isolates tested with very low MICs (2 µg/ml, equivalent to 0.2 µM), i.e., at or below the typical antibiotic MICs reported for antibiotic-sensitive strains. DIBI inhibition is Fe specific, and it caused an iron-restricted bacterial physiology that led to enhanced antibiotic killing by several discrete antibiotics. DIBI also strongly suppressed recovery growth of the surviving population following antibiotic exposure. A low intranasal dose (11 µmol/kg) of DIBI after intranasal challenge with hypervirulent ciprofloxacin (CIP)-resistant A. baumannii LAC-4 significantly reduced bacterial burdens in mice, and DIBI also suppressed the spread of the infection to the spleen. Treatment of infected mice with CIP alone (20 mg/kg, equivalent to 60 µmol/kg) was ineffective given LAC-4's CIP resistance, but if combined with DIBI, the treatment efficacy improved significantly. Our evidence suggests that DIBI restricts host iron availability to A. baumannii growing in the respiratory tract, bolstering the host innate iron restriction mechanisms. DIBI has potential as a sole anti-infective or in combination with conventional antibiotics for the treatment of A. baumannii pneumonia.


Assuntos
Acinetobacter baumannii/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Ferro/metabolismo , Pneumonia/tratamento farmacológico , Pneumonia/microbiologia , Acinetobacter baumannii/metabolismo , Acinetobacter baumannii/patogenicidade , Animais , Quimiocinas/metabolismo , Ciprofloxacina/farmacologia , Ciprofloxacina/uso terapêutico , Citocinas/metabolismo , Farmacorresistência Bacteriana Múltipla , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Testes de Sensibilidade Microbiana , Pneumonia/metabolismo , Virulência
3.
Artigo em Inglês | MEDLINE | ID: mdl-29844048

RESUMO

Candida albicans is an important opportunistic pathogen causing various human infections that are often treated with azole antifungals. The U.S. CDC now regards developing candidal antifungal resistance as a threat, creating a need for new and more effective antifungal treatments. Iron is an essential nutrient for all living cells, and there is growing evidence that interference with iron homeostasis of C. albicans can improve its response to antifungals. This study was aimed at establishing whether withholding iron by currently used medical iron chelators and the novel chelator DIBI could restrict growth and also enhance the activity of azoles against clinical isolates of C. albicans DIBI, but not deferoxamine or deferiprone, inhibited the growth of C. albicans at relatively low concentrations in vitro, and this inhibition was reversed by iron addition. DIBI in combination with various azoles demonstrated stronger growth inhibition than the azoles alone and greatly prolonged the inhibition of cell multiplication. In addition, the administration of DIBI along with fluconazole (FLC) to mice inoculated with an FLC-sensitive isolate in a model of experimental C. albicans vaginitis showed a markedly improved clearance of infection. These results suggest that iron chelation by DIBI has the potential to enhance azole efficacy for the treatment of candidiasis.


Assuntos
Antifúngicos/uso terapêutico , Azóis/uso terapêutico , Candida albicans/efeitos dos fármacos , Candida albicans/patogenicidade , Animais , Candida/efeitos dos fármacos , Candida/patogenicidade , Deferiprona/uso terapêutico , Desferroxamina/uso terapêutico , Modelos Animais de Doenças , Farmacorresistência Fúngica , Sinergismo Farmacológico , Feminino , Camundongos , Vaginite
5.
Front Microbiol ; 9: 1811, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30154764

RESUMO

DIBI, a purpose-designed hydroxypyridinone-containing iron-chelating antimicrobial polymer was studied for its anti-staphylococcal activities in vitro in comparison to deferiprone, the chemically related, small molecule hydroxypyridinone chelator. The sensitivities of 18 clinical isolates of Staphylococcus aureus from human, canine and bovine infections were determined. DIBI was strongly inhibitory to all isolates, displaying approximately 100-fold more inhibitory activity than deferiprone when compared on their molar iron-binding capacities. Sensitivity to DIBI was similar for both antibiotic-resistant and -sensitive isolates, including hospital- and community-acquired (United States 300) MRSA. DIBI inhibition was primarily bacteriostatic in nature at low concentration and was reversible by addition of Fe. DIBI also exhibited in vivo anti-infective activity in two distinct MRSA ATCC43300 infection and colonization models in mice. In a superficial skin wound infection model, topical application of DIBI provided a dose-dependent suppression of infection along with reduced wound inflammation. Intranasal DIBI reduced staphylococcal burden by >2 log in a MRSA nares carriage model. DIBI was also examined for its influence on antibiotic activities with a reference isolate ATCC6538, typically utilized to assess new antimicrobials. Sub-bacteriostatic concentrations of DIBI resulted in Fe-restricted growth and this physiological condition displayed increased sensitivity to GEN, CIP, and VAN. DIBI did not impair antibiotic activity but rather it enhanced overall killing. Importantly, recovery growth of survivors that typically followed an initial sub-MIC antibiotic killing phase was substantially suppressed by DIBI for each of the antibiotics examined. DIBI has promise for restricting staphylococcal infection on its own, regardless of the isolate's animal source or antibiotic resistance profile. DIBI also has potential for use in combination with various classes of currently available antibiotics to improve their responses.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA