Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
BMC Biol ; 13: 75, 2015 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-26377197

RESUMO

BACKGROUND: Plants under herbivore attack release volatiles that attract natural enemies, and herbivores in turn avoid such plants. Whilst herbivore-induced plant volatile blends appeared to reduce the attractiveness of host plants to herbivores, the volatiles that are key in this process and particularly the way in which deterrence is coded in the olfactory system are largely unknown. Here we demonstrate that herbivore-induced cotton volatiles suppress orientation of the moth Spodoptera littoralis to host plants and mates. RESULTS: We found that (E)-4,8-dimethyl-1,3,7-nonatriene (DMNT), an induced volatile, is key in herbivore deterrence: DMNT suppressed plant odour- and pheromone-induced behaviours. We then dissected the neurophysiological basis of this interaction. DMNT-responding glomeruli were also activated by other plant compounds, suggesting that S. littoralis possesses no segregated olfactory circuit dedicated exclusively to DMNT. Instead, DMNT suppressed responses to the main pheromone component, (Z)-9-(E)-11-tetradecenyl acetate, and primarily to (Z)-3-hexenyl acetate, a host plant attractant. CONCLUSION: Our study shows that olfactory sensory inhibition, which has previously been reported without reference to an animal's ecology, can be at the core of coding of ecologically relevant odours. As DMNT attracts natural enemies and deters herbivores, it may be useful in the development or enhancement of push-pull strategies for sustainable agriculture.


Assuntos
Alcenos/farmacologia , Herbivoria/efeitos dos fármacos , Condutos Olfatórios/efeitos dos fármacos , Orientação/efeitos dos fármacos , Animais , Comportamento Animal/efeitos dos fármacos , Comportamento Animal/fisiologia , Comportamento de Escolha/efeitos dos fármacos , Comportamento de Escolha/fisiologia , Herbivoria/fisiologia , Condutos Olfatórios/fisiologia , Orientação/fisiologia , Spodoptera/efeitos dos fármacos , Spodoptera/fisiologia
2.
Proc Biol Sci ; 282(1799): 20141884, 2015 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-25621329

RESUMO

Mating has profound effects on animal physiology and behaviour, not only in females but also in males, which we show here for olfactory responses. In cotton leafworm moths, Spodoptera littoralis, odour-mediated attraction to sex pheromone and plant volatiles are modulated after mating, producing a behavioural response that matches the physiological condition of the male insect. Unmated males are attracted by upwind flight to sex pheromone released by calling females, as well as to volatiles of lilac flowers and green leaves of the host plant cotton, signalling adult food and mating sites, respectively. Mating temporarily abolishes male attraction to females and host plant odour, but does not diminish attraction to flowers. This behavioural modulation is correlated with a response modulation in the olfactory system, as shown by electro-physiological recordings from antennae and by functional imaging of the antennal lobe, using natural odours and synthetic compounds. An effect of mating on the olfactory responses to pheromone and cotton plant volatiles but not to lilac flowers indicates the presence of functionally independent neural circuits within the olfactory system. Our results indicate that these circuits interconnect and weigh perception of social and habitat odour signals to generate appropriate behavioural responses according to mating state.


Assuntos
Sinais (Psicologia) , Mariposas/fisiologia , Atrativos Sexuais , Comportamento Sexual Animal , Animais , Feminino , Flores , Masculino , Odorantes , Folhas de Planta
3.
Insects ; 15(1)2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38249071

RESUMO

Understanding the fundamental life cycle and reproductive behavior of a pest insect is essential for developing efficient control strategies; however, much of this knowledge remains elusive for a multitude of insects, including the cotton seed bug, Oxycarenus hyalinipennis. Here, we report the results of our comprehensive study on the cotton seed bug's life cycle, including mating behavior, adult lifespan, and egg-to-adulthood development. Our findings showed that adult males and females began mating as early as three days after emerging (75%), and the frequency of mating increased to 100% by the fifth day. Mated females commenced oviposition on cotton seeds as early as two days after mating, with a cumulative mean number of 151 fertile eggs oviposited during the first oviposition cycle. Furthermore, around 10% of eggs from both mated and unmated females remained unfertilized. The first instar nymphs began emerging approximately seven days following oviposition. To track their development, we monitored the newly hatched nymphs daily until they reached adulthood. There were five nymphal stages, which cumulatively took roughly 28 to 30 days. Notably, mating positively influenced the survivorship and lifespan of adult O. hyalinipennis. Mated males and females exhibited median lifespans of 28 and 25 days, respectively. In contrast, unmated males and females only lived for a median lifespan of 9.5 days, about one-third that of the mated O. hyalinipennis. Our study provides key insights into the O. hyalinipennis life history for new IPM strategies.

4.
Pest Manag Sci ; 79(8): 2831-2839, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36935454

RESUMO

BACKGROUND: The fall armyworm (FAW), Spodoptera frugiperda (J.E. Smith), is a global pest that feeds on >350 plant species and severely limits production of cultivated grasses, vegetable crops and cotton. An efficient way to detect new invasions at early stages, and monitor and quantify the status of established infestations of this pest is to deploy traps baited with species-specific synthetic sex pheromone lures. RESULTS: We re-examined the compounds in the sex pheromone glands of FAW females by gas chromatography-electroantennogram detector (GC-EAD), GC-mass spectrometry (MS), behavioral and field assays. A new bioactive compound from pheromone gland extracts was detected in low amounts (3.0% relative to (Z)-9-tetradecenyl acetate (Z9-14:OAc), the main pheromone component), and identified as nonanal. This aldehyde significantly increased attraction of male moths to a mix of Z9-14:OAc and (Z)-7-dodecenyl acetate in olfactometer assays. Adding nonanal to this two-component mix also doubled male trap catches relative to the two-component mix alone in cotton fields, whereas nonanal alone did not attract any moths. The addition of nonanal to each of three commercial pheromone lures also increased male catches by 53-135% in sorghum and cotton fields. CONCLUSION: The addition of nonanal to pheromone lures should improve surveillance, monitoring and control of FAW populations. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Mariposas , Atrativos Sexuais , Animais , Feminino , Atrativos Sexuais/farmacologia , Atrativos Sexuais/química , Spodoptera , Cromatografia Gasosa-Espectrometria de Massas , Feromônios , Aldeídos
5.
Proc Biol Sci ; 279(1737): 2314-22, 2012 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-22319127

RESUMO

Mating induces profound physiological changes in a wide range of insects, leading to behavioural adjustments to match the internal state of the animal. Here, we show for the first time, to our knowledge, that a noctuid moth switches its olfactory response from food to egg-laying cues following mating. Unmated females of the cotton leafworm (Spodoptera littoralis) are strongly attracted to lilac flowers (Syringa vulgaris). After mating, attraction to floral odour is abolished and the females fly instead to green-leaf odour of the larval host plant cotton, Gossypium hirsutum. This behavioural switch is owing to a marked change in the olfactory representation of floral and green odours in the primary olfactory centre, the antennal lobe (AL). Calcium imaging, using authentic and synthetic odours, shows that the ensemble of AL glomeruli dedicated to either lilac or cotton odour is selectively up- and downregulated in response to mating. A clear-cut behavioural modulation as a function of mating is a useful substrate for studies of the neural mechanisms underlying behavioural decisions. Modulation of odour-driven behaviour through concerted regulation of odour maps contributes to our understanding of state-dependent choice and host shifts in insect herbivores.


Assuntos
Comportamento Apetitivo , Sinais (Psicologia) , Mariposas/fisiologia , Odorantes , Comportamento Sexual Animal/fisiologia , Olfato/fisiologia , Análise de Variância , Animais , Comportamento Apetitivo/fisiologia , Mapeamento Encefálico , Feminino , Flores/química , Cromatografia Gasosa-Espectrometria de Massas , Gossypium/química , Processamento de Imagem Assistida por Computador , Folhas de Planta/química , Suécia , Syringa/química
6.
Sci Rep ; 11(1): 1915, 2021 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-33479298

RESUMO

Reproductive fitness and survival are enhanced by adaptive behaviors that are modulated by internal physiological states and external social contexts. The common bed bug, Cimex lectularius, is an obligate hematophagous ectoparasite that requires host blood for growth, development, and reproduction. We investigated how mating, starvation and social interactions affect host-seeking, blood feeding, oviposition, and survival of female bed bugs. The percentage of females that fed and the amount of blood they ingested were greater in mated females (90-100%) than in unmated females (48-60%). Mating state also modulated the female's orientation towards human skin odor in an olfactometer; more mated (69%) than unmated (23%) females responded to human odors. The response rate of unmated females (60%) to skin odor increased with longer starvation period, while the opposite pattern was observed in mated females (20%). Although fecundity after a single blood meal was unaffected by long or short residence and interaction with males, females subjected to frequent copulation attempts had lower survivorship and lifespan than females housed with males for only 24 h. Taken together, these results indicate that by adaptively and coordinately expressing behaviors based on the internal physiological state, females maximize their survival and reproductive fitness.


Assuntos
Percevejos-de-Cama/fisiologia , Ectoparasitoses/parasitologia , Comportamento Alimentar/fisiologia , Comportamento Sexual Animal/fisiologia , Animais , Percevejos-de-Cama/patogenicidade , Copulação/fisiologia , Feminino , Fertilidade/fisiologia , Humanos , Reprodução/fisiologia
7.
J Med Entomol ; 56(2): 362-367, 2019 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-30423171

RESUMO

Bed bugs (Cimex lectularius L.) (Hemiptera: Cimicidae) are obligate hematophagous ectoparasites, and, therefore, must locate suitable hosts to ensure survival and reproduction. Their largely nocturnal activity suggests that chemosensory and thermosensory cues would play critical roles in host location. Yet, the importance of olfaction in host attraction of bed bugs remains unclear. We developed and validated a Y-tube, two-choice olfactometer and tested its suitability for investigating attraction to human odors (from skin swabs). Olfactometer orientation significantly affected the percentage of bed bugs that were activated by human odors, with significantly more bed bugs responding when the olfactometer was oriented vertically (bug introduced at bottom of the olfactometer) compared with all other orientations. Starved (7-10 d) adult males, mated females, and nymphs responded (47-77% moved up the olfactometer and made a choice) when human odors were present in the olfactometer, while starved, unmated females did not respond. Skin swabs from all five human participants elicited high response rates (65-82%), and bed bugs from four different populations responded to skin swabs (40-82% response rate). However, in all assays including those resulting in relatively low response rates, bed bugs exhibited >90% preference for human odors over blank controls. These results provide strong evidence that bed bugs can respond and orient towards human odors, independently of all other host cues. Furthermore, the validated olfactometer should enable rapid and efficient evaluations of bed bug behavioral responses to semiochemicals.


Assuntos
Percevejos-de-Cama , Olfatometria/instrumentação , Animais , Comportamento Apetitivo , Feminino , Humanos , Masculino , Ninfa , Odorantes
8.
Sci Rep ; 8(1): 5656, 2018 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-29618749

RESUMO

Anopheles gambiae coluzzii (An. coluzzii) uses olfaction to modulate a range of critical behaviors that are essential for survival and reproduction; most notably, host preference and selection underlie its vectorial capacity for human malaria. As is the case for all mosquitoes, An. coluzzii has three specialized peripheral olfactory appendages-the antennae, maxillary palps and labella-which are used to detect and orient in response to a large variety of olfactory cues. Of these, neither the molecular nor the physiological significance of the labellum have been thoroughly characterized despite suggestions that labial-derived odorant reception is critical for close-range host attraction. Here we report global chemoreceptor transcriptome profiles together with a systematic electrophysiological analysis of labial T2 sensilla, and associated behavioral responses of female An. coluzzii. Single sensillum recordings of the T2 sensilla revealed robust responses to odorants previously associated with human sweat and oviposition sites and identified a 10-component blend that elicited attraction in a dual-choice landing bioassay designed to mimic host seeking in which non-blood fed females were significantly more attracted to the labial-responsive odorant blend as compared to gravid females. Taken together, these data suggest that, in An. coluzzii, olfactory responses derived from the labellum contribute to host-seeking.


Assuntos
Anopheles/fisiologia , Malária/transmissão , Mosquitos Vetores/fisiologia , Odorantes/análise , Receptores Odorantes/genética , Sensilas/fisiologia , Olfato/genética , Animais , Anopheles/genética , Feminino , Especificidade de Hospedeiro , Malária/parasitologia , Masculino , Oviposição , Transcriptoma
9.
PLoS One ; 11(2): e0149800, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26900947

RESUMO

Selection of oviposition sites by gravid females is a critical behavioral step in the reproductive cycle of Anopheles coluzzii, which is one of the principal Afrotropical malaria vector mosquitoes. Several studies suggest this decision is mediated by semiochemicals associated with potential oviposition sites. To better understand the chemosensory basis of this behavior and identify compounds that can modulate oviposition, we examined the generally held hypothesis that suboptimal larval habitats give rise to semiochemicals that negatively influence the oviposition preference of gravid females. Dual-choice bioassays indicated that oviposition sites conditioned in this manner do indeed foster significant and concentration dependent aversive effects on the oviposition site selection of gravid females. Headspace analyses derived from aversive habitats consistently noted the presence of dimethyl disulfide (DMDS), dimethyl trisulfide (DMTS) and 6-methyl-5-hepten-2-one (sulcatone) each of which unitarily affected An. coluzzii oviposition preference. Electrophysiological assays across the antennae, maxillary palp, and labellum of gravid An. coluzzii revealed differential responses to these semiochemicals. Taken together, these findings validate the hypothesis in question and suggest that suboptimal environments for An. coluzzii larval development results in the release of DMDS, DMTS and sulcatone that impact the response valence of gravid females.


Assuntos
Anopheles/fisiologia , Ecossistema , Insetos Vetores/fisiologia , Malária , Oviposição/fisiologia , Animais , Dissulfetos/farmacologia , Feminino , Cetonas/farmacologia , Larva , Oviposição/efeitos dos fármacos , Sulfetos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA