Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
J Infect Dis ; 225(11): 2011-2022, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-34718641

RESUMO

BACKGROUND: Plasmodium falciparum-infected red blood cells (iRBCs) bind and sequester in deep vascular beds, causing malaria-related disease and death. In pregnant women, VAR2CSA binds to chondroitin sulfate A (CSA) and mediates placental sequestration, making it the major placental malaria (PM) vaccine target. METHODS: In this study, we characterize an invariant protein associated with PM called P falciparum chondroitin sulfate A ligand (PfCSA-L). RESULTS: Recombinant PfCSA-L binds both placental CSA and VAR2CSA with nanomolar affinity, and it is coexpressed on the iRBC surface with VAR2CSA. Unlike VAR2CSA, which is anchored by a transmembrane domain, PfCSA-L is peripherally associated with the outer surface of knobs through high-affinity protein-protein interactions with VAR2CSA. This suggests that iRBC sequestration involves complexes of invariant and variant surface proteins, allowing parasites to maintain both diversity and function at the iRBC surface. CONCLUSIONS: The PfCSA-L is a promising target for intervention because it is well conserved, exposed on infected cells, and expressed and localized with VAR2CSA.


Assuntos
Vacinas Antimaláricas , Malária Falciparum , Malária , Anticorpos Antiprotozoários , Antígenos de Protozoários , Sulfatos de Condroitina , Eritrócitos/parasitologia , Feminino , Humanos , Malária/prevenção & controle , Malária Falciparum/parasitologia , Placenta/parasitologia , Plasmodium falciparum , Gravidez
2.
PLoS Pathog ; 14(2): e1006836, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29470517

RESUMO

Apicomplexan parasites are global killers, being the causative agents of diseases like toxoplasmosis and malaria. These parasites are known to be hypersensitive to redox imbalance, yet little is understood about the cellular roles of their various redox regulators. The apicoplast, an essential plastid organelle, is a verified apicomplexan drug target. Nuclear-encoded apicoplast proteins traffic through the ER and multiple apicoplast sub-compartments to their place of function. We propose that thioredoxins contribute to the control of protein trafficking and of protein function within these apicoplast compartments. We studied the role of two Toxoplasma gondii apicoplast thioredoxins (TgATrx), both essential for parasite survival. By describing the cellular phenotypes of the conditional depletion of either of these redox regulated enzymes we show that each of them contributes to a different apicoplast biogenesis pathway. We provide evidence for TgATrx1's involvement in ER to apicoplast trafficking and TgATrx2 in the control of apicoplast gene expression components. Substrate pull-down further recognizes gene expression factors that interact with TgATrx2. We use genetic complementation to demonstrate that the function of both TgATrxs is dependent on their disulphide exchange activity. Finally, TgATrx2 is divergent from human thioredoxins. We demonstrate its activity in vitro thus providing scope for drug screening. Our study represents the first functional characterization of thioredoxins in Toxoplasma, highlights the importance of redox regulation of apicoplast functions and provides new tools to study redox biology in these parasites.


Assuntos
Apicoplastos/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Biogênese de Organelas , Tiorredoxinas/metabolismo , Toxoplasma/fisiologia , Sequência de Aminoácidos , Biomarcadores/metabolismo , Sequência Conservada , Evolução Molecular , Técnicas de Silenciamento de Genes , Proteínas Luminescentes/química , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Microscopia de Fluorescência , Mutação , Filogenia , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Multimerização Proteica , Transporte Proteico , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Tiorredoxinas/química , Tiorredoxinas/genética , Toxoplasma/citologia , Toxoplasma/crescimento & desenvolvimento
3.
J Infect Dis ; 211(7): 1134-43, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25355939

RESUMO

BACKGROUND: We developed a 2-step approach to screen molecules that prevent and/or reverse Plasmodium falciparum-infected erythrocyte (IE) binding to host receptors. IE adhesion and sequestration in vasculature causes severe malaria, and therefore antiadhesion therapy might be useful as adjunctive treatment. IE adhesion is mediated by the polymorphic family (approximately 60 members) of P. falciparum EMP1 (PfEMP1) multidomain proteins. METHODS: We constructed sets of PfEMP1 domains that bind ICAM-1, CSA, or CD36, receptors that commonly support IE binding. Combinations of domain-coated beads were assayed by Bio-Plex technology as a high-throughput molecular platform to screen antiadhesion molecules (antibodies and small molecules). Molecules identified as so-called hits in the screen (first step) then could be assayed individually for inhibition of binding of live IE to receptors (second step). RESULTS: In proof-of-principle studies, the antiadhesion activity of several antibodies was concordant in Bio-Plex and live IE assays. Using this 2-step approach, we identified several molecules in a small molecule library of 10 000 compounds that could inhibit and reverse binding of IEs to ICAM-1 and CSA receptors. CONCLUSION: This 2-step screening approach should be efficient for identification of antiadhesion drug candidates for falciparum malaria.


Assuntos
Moléculas de Adesão Celular/metabolismo , Eritrócitos/parasitologia , Malária Falciparum/prevenção & controle , Plasmodium falciparum/efeitos dos fármacos , Proteínas de Protozoários/metabolismo , Antígenos CD36/metabolismo , Adesão Celular/efeitos dos fármacos , Adesão Celular/imunologia , Linhagem Celular , Eritrócitos/imunologia , Eritrócitos/metabolismo , Ensaios de Triagem em Larga Escala , Humanos , Molécula 1 de Adesão Intercelular/metabolismo , Malária Falciparum/imunologia , Malária Falciparum/parasitologia , Plasmodium falciparum/imunologia , Bibliotecas de Moléculas Pequenas
4.
Infect Immun ; 81(4): 1031-9, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23319559

RESUMO

Placental malaria (PM) is characterized by infected erythrocytes (IEs) that selectively bind to chondroitin sulfate A (CSA) and sequester in placental tissue. Variant surface antigen 2-CSA (VAR2CSA), a Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) protein family member, is expressed on the surface of placental IEs and mediates adherence to CSA on the surface of syncytiotrophoblasts. This transmembrane protein contains 6 Duffy binding-like (DBL) domains which might contribute to the specific adhesive properties of IEs. Here, we use laboratory isolate 3D7 VAR2CSA DBL domains expressed in Escherichia coli to generate antibodies specific for this protein. Flow cytometry results showed that antibodies generated against DBL4ε, DBL5ε, DBL6ε, and tandem double domains of DBL4-DBL5 and DBL5-DBL6 all bind to placental parasite isolates and to lab strains selected for CSA binding but do not bind to children's parasites. Antisera to DBL4ε and to DBL5ε inhibit maternal IE binding to placental tissue in a manner comparable to that for plasma collected from multigravid women. These antibodies also inhibit binding to CSA of several field isolates derived from pregnant women, while antibodies to double domains do not enhance the functional immune response. These data support DBL4ε and DBL5ε as vaccine candidates for pregnancy malaria and demonstrate that E. coli is a feasible tool for the large-scale manufacture of a vaccine based on these VAR2CSA domains.


Assuntos
Anticorpos Antiprotozoários/sangue , Antígenos de Protozoários/imunologia , Sulfatos de Condroitina/imunologia , Vacinas Antimaláricas/imunologia , Malária/prevenção & controle , Placenta/parasitologia , Adulto , Animais , Anticorpos Antiprotozoários/imunologia , Antígenos de Protozoários/genética , Adesão Celular , Sulfatos de Condroitina/genética , Sulfatos de Condroitina/metabolismo , Escherichia coli/genética , Feminino , Expressão Gênica , Humanos , Recém-Nascido , Vacinas Antimaláricas/administração & dosagem , Plasmodium falciparum/genética , Plasmodium falciparum/imunologia , Gravidez , Estrutura Terciária de Proteína , Ratos , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/imunologia , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/imunologia
5.
Infect Immun ; 81(2): 487-95, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23208604

RESUMO

Pregnancy malaria is caused by Plasmodium falciparum-infected erythrocytes that adhere to the placental receptor chondroitin sulfate A (CSA) and sequester in the placenta; women become resistant to pregnancy malaria as they acquire antiadhesion antibodies that target surface proteins of placental parasites. VAR2CSA, a member of the P. falciparum EMP1 variant surface antigen family, is the leading candidate for a pregnancy malaria vaccine. Because VAR2CSA is a high-molecular-weight protein, a vaccine based on the full-length protein may not be feasible. An alternative approach has been to develop a vaccine targeting individual Duffy binding-like (DBL) domains. In this study, a consortium of laboratories under the Pregnancy Malaria Initiative compared the functional activity of antiadhesion antibodies elicited by different VAR2CSA domains and variants produced in prokaryotic and eukaryotic expression systems. Antisera were initially tested against laboratory lines of maternal parasites, and the most promising reagents were evaluated in the field against fresh placental parasite samples. Recombinant proteins expressed in Escherichia coli elicited antibody levels similar to those expressed in eukaryotic systems, as did the two allelic forms of the DBL4 and DBL5 domains. The procedures developed for this head-to-head comparison will be useful for future evaluation and down-selection of malaria vaccine immunogens.


Assuntos
Anticorpos Antiprotozoários/imunologia , Antígenos de Protozoários/imunologia , Vacinas Antimaláricas/imunologia , Malária Falciparum/imunologia , Placenta/imunologia , Plasmodium falciparum/imunologia , Complicações Parasitárias na Gravidez/imunologia , Animais , Sulfatos de Condroitina/imunologia , Estudos de Coortes , Feminino , Humanos , Soros Imunes/imunologia , Imunoglobulina G/imunologia , Estudos Longitudinais , Vacinas Antimaláricas/farmacologia , Malária Falciparum/prevenção & controle , Gravidez , Complicações Parasitárias na Gravidez/prevenção & controle , Ratos , Proteínas Recombinantes/imunologia
6.
NPJ Vaccines ; 7(1): 113, 2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-36195607

RESUMO

Antibodies against the Plasmodium falciparum circumsporozoite protein (PfCSP) can block hepatocyte infection by sporozoites and protect against malaria. Needle-free vaccination strategies are desirable, yet most PfCSP-targeted vaccines like RTS,S require needle-based administration. Here, we evaluated the edible algae, Arthrospira platensis (commonly called 'spirulina') as a malaria vaccine platform. Spirulina were genetically engineered to express virus-like particles (VLPs) consisting of the woodchuck hepatitis B core capsid protein (WHcAg) displaying a (NANP)15 PfCSP antigen on its surface. PfCSP-spirulina administered to mice intranasally followed by oral PfCSP-spirulina boosters resulted in a strong, systemic anti-PfCSP immune response that was protective against subcutaneous challenge with PfCSP-expressing P. yoelii. Unlike male mice, female mice did not require Montanide adjuvant to reach high antibody titers or protection. The successful use of spirulina as a vaccine delivery system warrants further development of spirulina-based vaccines as a useful tool in addressing malaria and other diseases of global health importance.

7.
Nat Biotechnol ; 40(6): 956-964, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35314813

RESUMO

The use of the edible photosynthetic cyanobacterium Arthrospira platensis (spirulina) as a biomanufacturing platform has been limited by a lack of genetic tools. Here we report genetic engineering methods for stable, high-level expression of bioactive proteins in spirulina, including large-scale, indoor cultivation and downstream processing methods. Following targeted integration of exogenous genes into the spirulina chromosome (chr), encoded protein biopharmaceuticals can represent as much as 15% of total biomass, require no purification before oral delivery and are stable without refrigeration and protected during gastric transit when encapsulated within dry spirulina. Oral delivery of a spirulina-expressed antibody targeting campylobacter-a major cause of infant mortality in the developing world-prevents disease in mice, and a phase 1 clinical trial demonstrated safety for human administration. Spirulina provides an advantageous system for the manufacture of orally delivered therapeutic proteins by combining the safety of a food-based production host with the accessible genetic manipulation and high productivity of microbial platforms.


Assuntos
Spirulina , Animais , Biomassa , Humanos , Camundongos , Fotossíntese , Proteínas/metabolismo , Spirulina/genética , Spirulina/metabolismo
8.
Eukaryot Cell ; 9(11): 1702-10, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20833891

RESUMO

Ubiquitous among eukaryotes, lipid droplets are organelles that function to coordinate intracellular lipid homeostasis. Their morphology and abundance is affected by numerous genes, many of which are involved in lipid metabolism. In this report we identify a Trypanosoma brucei protein kinase, LDK, and demonstrate its localization to the periphery of lipid droplets. Association with lipid droplets was abrogated when the hydrophobic domain of LDK was deleted, supporting a model in which the hydrophobic domain is associated with or inserted into the membrane monolayer of the organelle. RNA interference knockdown of LDK modestly affected the growth of mammalian bloodstream-stage parasites but did not affect the growth of insect (procyclic)-stage parasites. However, the abundance of lipid droplets dramatically decreased in both cases. This loss was dominant over treatment with myriocin or growth in delipidated serum, both of which induce lipid body biogenesis. Growth in delipidated serum also increased LDK autophosphorylation activity. Thus, LDK is required for the biogenesis or maintenance of lipid droplets and is one of the few protein kinases specifically and predominantly associated with an intracellular organelle.


Assuntos
Proteínas Quinases/metabolismo , Proteínas de Protozoários/metabolismo , Trypanosoma brucei brucei/metabolismo , Sequência de Bases , DNA de Protozoário/genética , Técnicas de Silenciamento de Genes , Genes de Protozoários , Metabolismo dos Lipídeos , Organelas/metabolismo , Proteínas Quinases/genética , Proteínas de Protozoários/antagonistas & inibidores , Proteínas de Protozoários/genética , Interferência de RNA , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/crescimento & desenvolvimento
10.
Mol Biochem Parasitol ; 142(1): 47-55, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15907560

RESUMO

Glycosomes are peroxisome-like organelles present in trypanosomatid pathogens. These organelles compartmentalize glycolysis, among other reactions, and are essential in both bloodstream and procyclic form Trypanosoma brucei. Peroxins (PEXs) are proteins necessary for biogenesis of peroxisomes and glycosomes. In each assembled trypanosomatid genome, we identified a predicted protein with approximately 20% sequence identity to human PEX19, a protein required for insertion of peroxisomal membrane proteins (PMPs) into the membrane. Functional analysis demonstrated that these proteins are indeed PEX19 orthologues. Like other PEX19s, T. brucei and Leishmania major PEX19 GFP fusion proteins are predominantly cytosolic. We further showed that LmPEX19 interacts with the glycosomal membrane protein PEX2 in the yeast two-hybrid system. Partial knockdown of TbPEX19 slowed parasite growth, particularly when glucose was present. Immunofluorescence and electron microscopic studies revealed biogenesis defect as evidenced by a sharp reduction in the number of glycosomes. Surprisingly, a four-fold increase in the size of the remaining glycosomes was observed. We propose that this phenotype of fewer but larger glycosomes results from the reduction in import of glycosomal membrane proteins.


Assuntos
Leishmania major/crescimento & desenvolvimento , Proteínas de Membrana , Peroxissomos/metabolismo , Proteínas de Protozoários , Trypanosoma brucei brucei/crescimento & desenvolvimento , Sequência de Aminoácidos , Animais , Glicólise , Humanos , Leishmania major/genética , Leishmania major/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Dados de Sequência Molecular , Fator 2 da Biogênese de Peroxissomos , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Alinhamento de Sequência , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/metabolismo
11.
Methods Mol Biol ; 1325: 231-9, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26450393

RESUMO

The parasite-binding inhibition assay is designed to evaluate the acquisition of naturally acquired functional antibodies that block Plasmodium falciparum binding to endothelial or placental receptors. The assay is also used to assess functional activity by antibodies induced by immunization, for example antibodies raised against pregnancy malaria vaccine candidates like VAR2CSA. Here we describe a plate-based assay to measure the levels of adhesion-blocking antibodies. This assay format can be adapted to any lab that is minimally equipped for short-term parasite culture.


Assuntos
Anticorpos Antiprotozoários/imunologia , Antígenos de Protozoários/imunologia , Vacinas Antimaláricas/imunologia , Malária Falciparum/parasitologia , Anticorpos Antiprotozoários/metabolismo , Antígenos de Protozoários/metabolismo , Eritrócitos/parasitologia , Feminino , Humanos , Malária Falciparum/imunologia , Placenta/parasitologia , Plasmodium falciparum/metabolismo , Plasmodium falciparum/patogenicidade , Gravidez
12.
PLoS One ; 8(4): e61323, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23593462

RESUMO

Plasmodium falciparum virulence has been ascribed to its ability to sequester in deep vascular beds, mediated by the variant surface antigen family PfEMP1 binding endothelial receptors like ICAM-1. We previously observed that naturally-acquired antibodies that block a PfEMP1 domain, DBL2ß of PF11_0521 allele, from binding to the human ICAM1 receptor, reduce the risk of malaria hospitalization in children. Here, we find that DBL2ßPF11_0521 binds ICAM-1 in the low nM range and relate the structure of this domain with its function and immunogenicity. We demonstrate that the interaction with ICAM-1 is not impaired by point mutations in the N-terminal subdomain or in the flexible Loop 4 of DBL2ßPF11_0521, although both substructures were previously implicated in binding ICAM-1. These data will help to refine the existing model of DBLß::ICAM-1 interactions. Antibodies raised against full-length DBL2ßPF11_0521, but not truncated forms lacking the N terminal fragment, block its interaction with ICAM-1. Our data suggest that full length domain is optimal for displaying functional epitopes and has a broad surface of interaction with ICAM-1 that is not disrupted by individual amino acid substitutions at putative key residues. This information might be important for the future design of anti-malarial vaccines based on PfEMP1 antigens.


Assuntos
Molécula 1 de Adesão Intercelular/metabolismo , Malária Falciparum/parasitologia , Parasitos/fisiologia , Plasmodium falciparum/fisiologia , Proteínas de Protozoários/química , Proteínas de Protozoários/metabolismo , Animais , Anticorpos Antiprotozoários/metabolismo , Células COS , Chlorocebus aethiops , Escherichia coli/metabolismo , Humanos , Proteínas Imobilizadas/metabolismo , Ligantes , Camundongos , Proteínas Mutantes/metabolismo , Plasmodium falciparum/imunologia , Ligação Proteica , Estrutura Terciária de Proteína , Relação Estrutura-Atividade
13.
Exp Parasitol ; 116(1): 14-24, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17188680

RESUMO

The glycosomes of trypanosomatids are essential organelles that are evolutionarily related to peroxisomes of other eukaryotes. The peroxisomal RING proteins-PEX2, PEX10 and PEX12-comprise a network of integral membrane proteins that function in the matrix protein import cycle. Here, we describe PEX10 and PEX12 in Trypanosoma brucei, Leishmania major, and Trypanosoma cruzi. We expressed GFP fusions of each T. brucei coding region in procyclic form T. brucei, where they localized to glycosomes and behaved as integral membrane proteins. Despite the weak transmembrane predictions for TbPEX12, protease protection assays demonstrated that both the N and C termini are cytosolic, similar to mammalian PEX12. GFP fusions of T. cruzi PEX10 and L. major PEX12 also localized to glycosomes in T. brucei indicating that glycosomal membrane protein targeting is conserved across trypanosomatids.


Assuntos
Proteínas de Membrana Transportadoras/química , Proteínas de Protozoários/química , Trypanosomatina/química , Sequência de Aminoácidos , Animais , Western Blotting , Linhagem Celular , Imunofluorescência , Leishmania major/química , Leishmania major/genética , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/fisiologia , Microcorpos/química , Dados de Sequência Molecular , Plasmídeos , Proteínas de Protozoários/genética , Proteínas de Protozoários/fisiologia , Interferência de RNA , RNA de Protozoário/química , Alinhamento de Sequência , Trypanosoma brucei brucei/química , Trypanosoma brucei brucei/genética , Trypanosoma cruzi/química , Trypanosoma cruzi/genética , Trypanosomatina/genética , Dedos de Zinco/fisiologia
14.
Eukaryot Cell ; 6(8): 1439-49, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17586720

RESUMO

Glycosomes are divergent peroxisomes found in trypanosomatid protozoa, including those that cause severe human diseases throughout much of the world. While peroxisomes are dispensable for both yeast (Saccharomyces cerevisiae and others) and mammalian cells in vitro, glycosomes are essential for trypanosomes and hence are viewed as a potential drug target. The import of proteins into the matrix of peroxisomes utilizes multiple peroxisomal membrane proteins which require the peroxin PEX19 for insertion into the peroxisomal membrane. In this report, we show that the specificity of peroxisomal membrane protein binding for Trypanosoma brucei PEX19 is very similar to those previously identified for human and yeast PEX19. Our studies show that trafficking is conserved across these distant phyla and that both a PEX19 binding site and a transmembrane domain are required for the insertion of two test proteins into the glycosomal membrane. However, in contrast to T. brucei PEX10 and PEX12, T. brucei PEX14 does not traffic to human peroxisomes, indicating that it is not recognized by the human PEX14 import mechanism.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Sequência Conservada , Membranas Intracelulares/metabolismo , Proteínas de Membrana/metabolismo , Microcorpos/metabolismo , Peroxissomos/metabolismo , Trypanosoma brucei brucei/genética , Membro 1 da Subfamília D de Transportadores de Cassetes de Ligação de ATP , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Sítios de Ligação , Humanos , Estágios do Ciclo de Vida/fisiologia , Proteínas de Membrana/genética , Dados de Sequência Molecular , Transporte Proteico , Trypanosoma brucei brucei/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA