RESUMO
OBJECTIVE: To develop and validate a neural network to estimate hip contact forces (HCF), and lower body kinematics and kinetics during walking in individuals with hip osteoarthritis (OA) using synthesised anatomical key points and electromyography. To assess the capability of the neural network to detect directional changes in HCF resulting from prescribed gait modifications. DESIGN: A calibrated electromyography-informed neuromusculoskeletal model was used to compute lower body joint angles, moments, and HCF for 17 participants with mild-to-moderate hip OA. Anatomical key points (e.g., joint centres) were synthesised from marker trajectories and augmented with bias and noise expected from computer vision-based pose estimation systems. Temporal convolutional and long short-term memory neural networks (NN) were trained using leave-one-subject-out validation to predict neuromusculoskeletal modelling outputs from the synthesised key points and measured electromyography data from 5 hip-spanning muscles. RESULTS: HCF was predicted with an average error of 13.4 ± 7.1% of peak force. Joint angles and moments were predicted with an average root-mean-square-error of 5.3 degrees and 0.10 Nm/kg, respectively. The NN could detect changes in peak HCF that occur due to gait modifications with good agreement with neuromusculoskeletal modelling (r2 = 0.72) and a minimum detectable change of 9.5%. CONCLUSION: The developed neural network predicted HCF and lower body joint angles and moments in individuals with hip OA using noisy synthesised key point locations with acceptable errors. Changes in HCF magnitude due to gait modifications were predicted with high accuracy. These findings have important implications for implementation of load-modification based gait retraining interventions for people with hip OA in a natural environment (i.e., home, clinic).
Assuntos
Eletromiografia , Marcha , Articulação do Quadril , Redes Neurais de Computação , Osteoartrite do Quadril , Humanos , Osteoartrite do Quadril/fisiopatologia , Eletromiografia/métodos , Feminino , Masculino , Fenômenos Biomecânicos , Pessoa de Meia-Idade , Articulação do Quadril/fisiopatologia , Idoso , Marcha/fisiologia , Caminhada/fisiologia , Músculo Esquelético/fisiopatologia , Suporte de Carga/fisiologiaRESUMO
The human semitendinosus muscle is characterized by a tendinous inscription separating proximal and distal neuromuscular compartments. As each compartment is innervated by separate nerve branches, potential exists for independent operation and control of compartments. However, the morphology and function of each compartment have not been thoroughly examined in an adult human population. Further, the distal semitendinosus tendon is typically harvested for use in anterior cruciate ligament reconstruction surgery, which induces long-term morphological changes to the semitendinosus muscle-tendon unit. It remains unknown if muscle morphological alterations following anterior cruciate ligament reconstruction are uniform between proximal and distal semitendinosus compartments. Here, we performed magnetic resonance imaging on 10 individuals who had undergone anterior cruciate ligament reconstruction involving an ipsilateral distal semitendinosus tendon graft 14 ± 4 months prior, extracting morphological parameters of the whole semitendinosus muscle and each individual compartment from both the (non-injured) contralateral and surgical legs. In the contralateral leg, volume and length of the proximal compartment were smaller than the distal compartment. No between-compartment differences in volume or length were found for anterior cruciate ligament reconstructed legs, likely due to greater shortening of the distal compared to the proximal compartment after anterior cruciate ligament reconstruction. The maximal anatomical cross-sectional area of both compartments was substantially smaller on the anterior cruciate ligament reconstructed leg but did not differ between compartments on either leg. The absolute and relative between-leg differences in proximal compartment morphology on the anterior cruciate ligament reconstructed leg were strongly correlated with the corresponding between-leg differences in distal compartment morphological parameters. Specifically, greater between-leg morphological differences in one compartment were highly correlated with large between-leg differences in the other compartment, and vice versa for smaller differences. These relationships indicate that despite the heterogeneity in compartment length and volume, compartment atrophy is not independent or random. Further, the tendinous inscription endpoints were generally positioned at the same proximodistal level as the compartment maximal anatomical cross-sectional areas, providing a wide area over which the tendinous inscription could mechanically interact with compartments. Overall, results suggest the two human semitendinosus compartments are not mechanically independent.
Assuntos
Reconstrução do Ligamento Cruzado Anterior , Músculos Isquiossurais , Adulto , Humanos , Músculo Esquelético/anatomia & histologia , Tendões , Ligamento Cruzado Anterior/cirurgia , Reconstrução do Ligamento Cruzado Anterior/métodosRESUMO
There is a powerful global trend toward deeper integration of digital twins into modern life driven by Industry 4.0 and 5.0. Defense, agriculture, engineering, manufacturing, and urban planning sectors have thoroughly incorporated digital twins to great benefit across their respective product lifecycles. Despite clear benefits, a digital twin framework for health and medical sectors is yet to emerge. This paper proposes a digital twin framework for precision neuromusculoskeletal health care. We build upon the International Standards Organization framework for digital twins for manufacturing by presenting best available computational models within a digital twin framework for clinical application. We map a use case for modeling Achilles tendon mechanobiology, highlighting how current modeling practices align with our proposed digital twin framework. Similarly, we map a use case for advanced neurorehabilitation technology, highlighting the role of a digital twin in control of systems where human and machine are interfaced. Future work must now focus on creating an informatic representation to govern how digital data are passed to, from, and within the digital twin, as well as specific standards to declare which measurement systems and modeling methods are acceptable to move toward widespread use of the digital twin framework for precision neuromusculoskeletal health care.
Assuntos
Tendão do Calcâneo , Sistema Musculoesquelético , Reabilitação Neurológica , HumanosRESUMO
PURPOSE: Quadriceps strength deficits following anterior cruciate ligament reconstruction (ACLR) are linked to altered lower extremity biomechanics, tibiofemoral joint (TFJ) space narrowing and cartilage composition changes. It is unknown, however, if quadriceps strength is associated with cartilage volume in the early years following ACLR prior to the onset of posttraumatic osteoarthritis (OA) development. The purpose of this cross-sectional study was to examine the relationship between quadriceps muscle strength (peak and across the functional range of knee flexion) and cartilage volume at ~ 2 years following ACLR and determine the influence of concomitant meniscal pathology. METHODS: The involved limb of 51 ACLR participants (31 isolated ACLR; 20 combined meniscal pathology) aged 18-40 years were tested at 2.4 ± 0.4 years post-surgery. Isokinetic knee extension torque generated in 10° intervals between 60° and 10° knee flexion (i.e. 60°-50°, 50°-40°, 40°-30°, 30°-20°, 20°-10°) together with peak extension torque were measured. Tibial and patellar cartilage volumes were measured using magnetic resonance imaging (MRI). The relationships between peak and angle-specific knee extension torque and MRI-derived cartilage volumes were evaluated using multiple linear regression. RESULTS: In ACLR participants with and without meniscal pathology, higher knee extension torques at 60°-50° and 50°-40° knee flexion were negatively associated with medial tibial cartilage volume (p < 0.05). No significant associations were identified between peak concentric or angle-specific knee extension torques and patellar cartilage volume. CONCLUSION: Higher quadriceps strength at knee flexion angles of 60°-40° was associated with lower cartilage volume on the medial tibia ~ 2 years following ACLR with and without concomitant meniscal injury. Regaining quadriceps strength across important functional ranges of knee flexion after ACLR may reduce the likelihood of developing early TFJ cartilage degenerative changes. LEVEL OF EVIDENCE: III.
Assuntos
Lesões do Ligamento Cruzado Anterior , Reconstrução do Ligamento Cruzado Anterior , Lesões do Ligamento Cruzado Anterior/cirurgia , Cartilagem/cirurgia , Estudos Transversais , Humanos , Articulação do Joelho/cirurgia , Força Muscular/fisiologia , Músculo Quadríceps/cirurgiaRESUMO
BACKGROUND: Anterior cruciate ligament reconstruction (ACLR) together with concomitant meniscal injury are risk factors for the development of tibiofemoral (TF) osteoarthritis (OA), but the potential effect on the patellofemoral (PF) joint is unclear. The aim of this study was to: (i) investigate change in patellar cartilage morphology in individuals 2.5 to 4.5 years after ACLR with or without concomitant meniscal pathology and in healthy controls, and (ii) examine the association between baseline patellar cartilage defects and patellar cartilage volume change. METHODS: Thirty two isolated ACLR participants, 25 ACLR participants with combined meniscal pathology and nine healthy controls underwent knee magnetic resonance imaging (MRI) with 2-year intervals (baseline = 2.5 years post-ACLR). Patellar cartilage volume and cartilage defects were assessed from MRI using validated methods. RESULTS: Both ACLR groups showed patellar cartilage volume increased over 2 years (p < 0.05), and isolated ACLR group had greater annual percentage cartilage volume increase compared with controls (mean difference 3.6, 95% confidence interval (CI) 1.0, 6.3%, p = 0.008) and combined ACLR group (mean difference 2.2, 95% CI 0.2, 4.2%, p = 0.028). Patellar cartilage defects regressed in the isolated ACLR group over 2 years (p = 0.02; Z = - 2.33; r = 0.3). Baseline patellar cartilage defect score was positively associated with annual percentage cartilage volume increase (Regression coefficient B = 0.014; 95% CI 0.001, 0.027; p = 0.03) in the pooled ACLR participants. CONCLUSIONS: Hypertrophic response was evident in the patellar cartilage of ACLR participants with and without meniscal pathology. Surprisingly, the increase in patellar cartilage volume was more pronounced in those with isolated ACLR. Although cartilage defects stabilised in the majority of ACLR participants, the severity of patellar cartilage defects at baseline influenced the magnitude of the cartilage hypertrophic response over the subsequent ~ 2 years.
Assuntos
Lesões do Ligamento Cruzado Anterior , Cartilagem , Humanos , Articulação do Joelho , Imageamento por Ressonância Magnética , Patela/diagnóstico por imagem , Patela/cirurgia , Estudos ProspectivosRESUMO
Determining the signal quality of surface electromyography (sEMG) recordings is time consuming and requires the judgement of trained observers. An automated procedure to evaluate sEMG quality would streamline data processing and reduce time demands. This paper compares the performance of two supervised and three unsupervised artificial neural networks (ANNs) in the evaluation of sEMG quality. Manually classified sEMG recordings from various lower-limb muscles during motor tasks were used to train (n=28,000), test performance (n=12,000) and evaluate accuracy (n=47,000) of the five ANNs in classifying signals into four categories. Unsupervised ANNs demonstrated a 30-40% increase in classification accuracy (>98%) compared with supervised ANNs. AlexNet demonstrated the highest accuracy (99.55%) with negligible false classifications. The results indicate that sEMG quality evaluation can be automated via an ANN without compromising human-like classification accuracy. This classifier will be publicly available and will be a valuable tool for researchers and clinicians using electromyography.
Assuntos
Eletromiografia/métodos , Redes Neurais de Computação , Processamento de Sinais Assistido por Computador , Algoritmos , HumanosRESUMO
BACKGROUND: People who have had anterior cruciate ligament reconstruction (ACLR) are at a high risk of developing tibiofemoral joint (TFJ) osteoarthritis (OA), with concomitant meniscal injury elevating this risk. This study aimed to investigate OA-related morphological change over 2 years in the TFJ among individuals who have undergone ACLR with or without concomitant meniscal pathology and in healthy controls. A secondary aim was to examine associations of baseline TFJ cartilage defects and bone marrow lesions (BML) scores with tibial cartilage volume change in ACLR groups. METHODS: Fifty seven ACLR participants aged 18-40 years (32 isolated ACLR, 25 combined meniscal pathology) underwent knee magnetic resonance imaging (MRI) 2.5 and 4.5 years post-surgery. Nine healthy controls underwent knee MRI at the ~ 2-year intervals. Tibial cartilage volume, TFJ cartilage defects and BMLs were assessed from MRI. RESULTS: For both ACLR groups, medial and lateral tibial cartilage volume increased over 2 years (P < 0.05). Isolated ACLR group had greater annual percentage increase in lateral tibial cartilage volume compared with controls and with the combined group (P = 0.03). Cartilage defects remained unchanged across groups. Both ACLR groups showed more lateral tibia BML regression compared with controls (P = 0.04). Baseline cartilage defects score was positively associated with cartilage volume increase at lateral tibia (P = 0.002) while baseline BMLs score was inversely related to medial tibia cartilage volume increase (P = 0.001) in the pooled ACLR group. CONCLUSIONS: Tibial cartilage hypertrophy was apparent in ACLR knees from 2.5 to 4.5 years post-surgery and was partly dependent upon meniscal status together with the nature and location of the underlying pathology at baseline. Magnitude and direction of change in joint pathologies (i.e., cartilage defects, BMLs) were less predictable and either remained stable or improved over follow-up.
Assuntos
Lesões do Ligamento Cruzado Anterior/cirurgia , Reconstrução do Ligamento Cruzado Anterior/efeitos adversos , Artroscopia/efeitos adversos , Osteoartrite do Joelho/epidemiologia , Complicações Pós-Operatórias/epidemiologia , Lesões do Menisco Tibial/cirurgia , Adulto , Lesões do Ligamento Cruzado Anterior/complicações , Medula Óssea/diagnóstico por imagem , Medula Óssea/patologia , Cartilagem Articular/diagnóstico por imagem , Cartilagem Articular/patologia , Feminino , Humanos , Articulação do Joelho/diagnóstico por imagem , Articulação do Joelho/patologia , Estudos Longitudinais , Imageamento por Ressonância Magnética , Masculino , Osteoartrite do Joelho/etiologia , Osteoartrite do Joelho/patologia , Complicações Pós-Operatórias/etiologia , Complicações Pós-Operatórias/patologia , Tíbia/diagnóstico por imagem , Tíbia/patologia , Lesões do Menisco Tibial/complicações , Fatores de Tempo , Adulto JovemRESUMO
Wills, JA, Saxby, DJ, Glassbrook, DJ, and Doyle, TLA. Load-carriage conditioning elicits task-specific physical and psychophysical improvements in males. J Strength Cond Res 33(9): 2338-2343, 2019-Load carriage is a requirement of many military roles and is commonly used as an assessment of soldier physical readiness. Loaded, compared with unloaded, walking tasks elicit increased physical demands, particularly around the hip joint, which can exceed the initial capacity of military personnel. This study aimed to identify and characterize physical performance responses to a lower-limb focused physical training program targeted toward load-carriage task demands. Fifteen healthy male civilians (22.6 ± 1.5 years, 1.82 ± 0.06 m, and 84.1 ± 6.9 kg) completed a 10-week physical training program consisting of resistance training and weighted walking. A load-carriage task representing the Australian Army All Corps minimum standard (5 km at 5.5 km·h, wearing a 23-kg torso-borne vest) was completed before and on completion of the 10-week training program. Heart rate and rating of perceived exertion measures were collected throughout the load-carriage task. The performance measures of countermovement and squat jumps, push-ups, sit-ups, and beep test were performed before, mid-way, and on completion (weeks 0, 6, and 11) of the 10-week training program. Psychophysical performance, as measured by rating of perceived exertion, significantly decreased (p < 0.05) during the load-carriage task after training, demonstrating improvements in psychophysical responses. The training program resulted in significant increases in squat jump maximal force, push-ups, sit-ups (p < 0.05), and estimated maximal oxygen uptake (p < 0.05). Physical performance improvements and positive physiological adaptations to a load-carriage task were elicited in males after completing a 10-week training program. Military organizations could use this evidence-based training program to efficiently train soldiers to improve their load-carriage capacity.
Assuntos
Militares , Condicionamento Físico Humano/fisiologia , Treinamento Resistido , Caminhada/fisiologia , Suporte de Carga/fisiologia , Adaptação Fisiológica , Austrália , Teste de Esforço , Frequência Cardíaca , Humanos , Remoção , Extremidade Inferior/fisiologia , Masculino , Força Muscular , Consumo de Oxigênio , Esforço Físico , Adulto JovemRESUMO
Soldiers carry heavy loads that may cause general discomfort, shoulder pain and injury. This study assessed if new body armour designs that incorporated a hip belt reduced shoulder pressures and improved comfort. Twenty-one Australian soldiers completed treadmill walking trials wearing six different body armours with two different loads (15 and 30 kg). Contact pressures applied to the shoulders were measured using pressure pads, and qualitative assessment of comfort and usability were acquired from questionnaires administered after walking trials. Walking with hip belt compared to no hip belt armour resulted in decreased mean and maximum shoulder pressures (p < 0.005), and 30% fewer participants experiencing shoulder discomfort (p < 0.005) in best designs, although hip discomfort did increase. Laterally concentrated shoulder pressures were associated with 1.34-times greater likelihood of discomfort (p = 0.026). Results indicate body armour and backpack designs should integrate a hip belt and distribute load closer to shoulder midline to reduce load carriage discomfort and, potentially, injury risk. Practitioner Summary: Soldiers carry heavy loads that increase their risk of discomfort and injury. New body armour designs are thought to ease this burden by transferring the load to the hips. This study demonstrated that designs incorporating a hip belt reduced shoulder pressure and shoulder discomfort compared to the current armour design.
Assuntos
Militares , Equipamento de Proteção Individual/efeitos adversos , Pressão/efeitos adversos , Dor de Ombro/prevenção & controle , Suporte de Carga , Adulto , Austrália , Desenho de Equipamento , Quadril , Humanos , Dor de Ombro/etiologia , Adulto JovemRESUMO
BACKGROUND: Femoroacetabular impingement syndrome (FAI), a hip disorder affecting active young adults, is believed to be a leading cause of hip osteoarthritis (OA). Current management approaches for FAI include arthroscopic hip surgery and physiotherapy-led non-surgical care; however, there is a paucity of clinical trial evidence comparing these approaches. In particular, it is unknown whether these management approaches modify the future risk of developing hip OA. The primary objective of this randomised controlled trial is to determine if participants with FAI who undergo hip arthroscopy have greater improvements in hip cartilage health, as demonstrated by changes in delayed gadolinium-enhanced magnetic resonance imaging (MRI) of cartilage (dGEMRIC) index between baseline and 12 months, compared to those who undergo physiotherapy-led non-surgical management. METHODS: This is a pragmatic, multi-centre, two-arm superiority randomised controlled trial comparing hip arthroscopy to physiotherapy-led management for FAI. A total of 140 participants with FAI will be recruited from the clinics of participating orthopaedic surgeons, and randomly allocated to receive either surgery or physiotherapy-led non-surgical care. The surgical intervention involves arthroscopic FAI surgery from one of eight orthopaedic surgeons specialising in this field, located in three different Australian cities. The physiotherapy-led non-surgical management is an individualised physiotherapy program, named Personalised Hip Therapy (PHT), developed by a panel to represent the best non-operative care for FAI. It entails at least six individual physiotherapy sessions over 12 weeks, and up to ten sessions over six months, provided by experienced musculoskeletal physiotherapists trained to deliver the PHT program. The primary outcome measure is the change in dGEMRIC score of a ROI containing both acetabular and femoral head cartilages at the chondrolabral transitional zone of the mid-sagittal plane between baseline and 12 months. Secondary outcomes include patient-reported outcomes and several structural and biomechanical measures relevant to the pathogenesis of FAI and development of hip OA. Interventions will be compared by intention-to-treat analysis. DISCUSSION: The findings will help determine whether hip arthroscopy or an individualised physiotherapy program is superior for the management of FAI, including for the prevention of hip OA. TRIAL REGISTRATION: Australia New Zealand Clinical Trials Registry reference: ACTRN12615001177549 . Trial registered 2/11/2015 (retrospectively registered).
Assuntos
Artroscopia/métodos , Impacto Femoroacetabular/epidemiologia , Impacto Femoroacetabular/terapia , Articulação do Quadril/cirurgia , Modalidades de Fisioterapia , Austrália/epidemiologia , Feminino , Impacto Femoroacetabular/diagnóstico por imagem , Articulação do Quadril/diagnóstico por imagem , Humanos , Masculino , Método Simples-Cego , Resultado do TratamentoRESUMO
PURPOSE: To examine differences in cartilage morphology between young adults 2-3 years post-anterior cruciate ligament reconstruction (ACLR), with or without meniscal pathology, and control participants. METHODS: Knee MRI was performed on 130 participants aged 18-40 years (62 with isolated ACLR, 38 with combined ACLR and meniscal pathology, and 30 healthy controls). Cartilage defects, cartilage volume and bone marrow lesions (BMLs) were assessed from MRI using validated methods. RESULTS: Cartilage defects were more prevalent in the isolated ACLR (69 %) and combined group (84 %) than in controls (10 %, P < 0.001). Furthermore, the combined group showed higher prevalence of cartilage defects on medial femoral condyle (OR 4.7, 95 % CI 1.3-16.6) and patella (OR 7.8, 95 % CI 1.5-40.7) than the isolated ACLR group. Cartilage volume was lower in both ACLR groups compared with controls (medial tibia, lateral tibia and patella, P < 0.05), whilst prevalence of BMLs was higher on lateral tibia (P < 0.001), with no significant differences between the two ACLR groups for either measure. CONCLUSIONS: Cartilage morphology was worse in ACLR patients compared with healthy controls. ACLR patients with associated meniscal pathology have a higher prevalence of cartilage defects than ACLR patients without meniscal pathology. The findings suggest that concomitant meniscal pathology may lead to a greater risk of future OA than isolated ACLR. LEVEL OF EVIDENCE: III.
Assuntos
Reconstrução do Ligamento Cruzado Anterior , Doenças das Cartilagens/patologia , Cartilagem Articular/cirurgia , Adolescente , Adulto , Ligamento Cruzado Anterior/cirurgia , Antropometria , Doenças das Cartilagens/cirurgia , Feminino , Seguimentos , Humanos , Instabilidade Articular , Imageamento por Ressonância Magnética/métodos , Masculino , Prevalência , Lesões do Menisco Tibial/cirurgia , Adulto JovemRESUMO
PURPOSE: Sprinting often provokes hip pain in individuals with femoroacetabular impingement syndrome (FAIS). Asphericity of the femoral head-neck junction (cam morphology) characteristic of FAIS can increase the risk of anterior-superior acetabular cartilage damage. This study aimed to 1) compare hip contact forces (magnitude and direction) during sprinting between individuals with FAIS, asymptomatic cam morphology (CAM), and controls without cam morphology, and 2) identify the phases of sprinting with high levels of anteriorly directed hip contact forces. METHODS: Forty-six recreationally active individuals with comparable levels of physical activity were divided into three groups (FAIS, 14; CAM, 15; control, 17) based on their history of hip/groin pain, results of clinical impingement tests, and presence of cam morphology (alpha angle >55°). Three-dimensional marker trajectories, ground reaction forces, and electromyograms from 12 lower-limb muscles were recorded during 10-m overground sprinting trials. A linearly scaled electromyogram-informed neuromusculoskeletal model was used to calculate hip contact force magnitude (resultant, anterior-posterior, inferior-superior, medio-lateral) and angle (sagittal and frontal planes). Between-group comparisons were made using two-sample t -tests via statistical parametric mapping ( P < 0.05). RESULTS: No significant differences in magnitude or direction of hip contact forces were observed between FAIS and CAM or between FAIS and control groups during any phase of the sprint cycle. The highest anteriorly directed hip contact forces were observed during the initial swing phase of the sprint cycle. CONCLUSIONS: Hip contact forces during sprinting do not differentiate recreationally active individuals with FAIS from asymptomatic individuals with and without cam morphology. Hip loading during early swing, where peak anterior loading occurs, may be a potential mechanism for cartilage damage during sprinting-related sports in individuals with FAIS and/or asymptomatic cam morphology.
Assuntos
Impacto Femoroacetabular , Humanos , Articulação do Quadril , Acetábulo/fisiologia , Quadril , Dor , ArtralgiaRESUMO
BACKGROUND AND OBJECTIVE: Three-dimensional spatial mechanisms have been used to accurately predict passive knee kinematics, and have shown potential to be used in optimized multibody kinematic models. Such multi-body models are anatomically consistent and can accurately predict passive knee kinematics, but require extensive medical image processing and thus are not widely adopted. This study aimed to automate the generation of kinematic models of tibiofemoral (TFJ) and patellofemoral (PFJ) joints from segmented magnetic resonance imaging (MRI) and compare them against a corresponding manual pipeline. METHODS: From segmented MRI of eight healthy participants (four females; aged 14.0 ± 2.6 years), geometric parameters (i.e., articular surfaces, ligament attachments) were determined both automatically and manually, and then assembled into TFJ and PFJ kinematic models to predict passive kinematics. The TFJ model was a six-link mechanism with deformable ligamentous constraints, whereas PFJ was a modified hinge. The ligament length changes through TFJ flexion were prescribed to literature strain profile. The geometric parameters were optimized to ensure physiological kinematic predictions through a Multiple Objective Particle Swarm Optimization. RESULTS: Geometric parameters showed strong agreement between automatic and manual pipelines (median error of 2.8 mm for anatomical landmarks and 1.5 mm for ligament lengths). Predicted TFJ and PFJ kinematics from the two pipelines were not statistically different, except for tibial superior/inferior translation near terminal TFJ extension. The TFJ kinematics predicted from the automatic pipeline had mean errors of 3.6° and 12.4° for adduction/abduction and internal/external rotation, respectively, and <7 mm mean translational error compared to the manual pipeline. Predicted PFJ had <9° mean rotational errors and <6 mm mean translational errors. CONCLUSIONS: The automatic pipeline developed and presented here can predict passive knee kinematics comparable to a manual pipeline, but removes laborious manual processing and provides a systematic approach to model creation.
Assuntos
Articulação do Joelho , Imageamento por Ressonância Magnética , Humanos , Fenômenos Biomecânicos , Feminino , Imageamento por Ressonância Magnética/métodos , Articulação do Joelho/fisiologia , Articulação do Joelho/diagnóstico por imagem , Masculino , Adolescente , Automação , Modelos Biológicos , Amplitude de Movimento Articular/fisiologiaRESUMO
Neuromusculoskeletal (NMS) models enable non-invasive estimation of clinically important internal biomechanics. A critical part of NMS modelling is the estimation of musculotendon kinematics, which comprise musculotendon unit lengths, moment arms, and lines of action. Musculotendon kinematics, which are partially dependent on joint angles, define the non-linear mapping of muscle forces to joint moments and contact forces. Currently, real-time computation of musculotendon kinematics requires creation of a per-individual surrogate model. The computational speed and accuracy of these surrogates degrade with increasing number of coordinates. We developed a feed-forward neural network that completely encodes musculotendon kinematics of a target model across a wide anthropometric range, enabling accurate real-time estimates of musculotendon kinematics without need for a priori creation of a per-individual surrogate model. Compared to reference, the neural network had median normalized errors ~0.1% for musculotendon lengths, <0.4% for moment arms, and <0.10° for line of action orientations. The neural network was employed within an electromyogram-informed NMS model to calculate hip contact forces, demonstrating little difference (normalized root mean square error 1.23±0.15 %) compared to using reference musculotendon kinematics. Finally, execution time was <0.04 ms per frame and constant for increasing number of model coordinates. Our approach to musculoskeletal kinematics may facilitate deployment of complex real-time NMS modelling in computer vision or wearable sensors applications to realize biomechanics monitoring, rehabilitation, and disease management outside the research laboratory.
Assuntos
Algoritmos , Músculo Esquelético , Redes Neurais de Computação , Humanos , Fenômenos Biomecânicos , Músculo Esquelético/fisiologia , Calibragem , Masculino , Sistemas Computacionais , Adulto , Feminino , Simulação por Computador , Modelos BiológicosRESUMO
Aggression-and its role in human societal development-continues to be hotly debated within both the sciences and the humanities. Whatever the evolutionary origins and repercussions of interpersonal and intergroup conflict for the human story, cultures around the globe have invested significant time and effort into designing deadly hand-held weaponry. Here, we describe for the first time, how humans deliver a deadly strike using two iconic and widespread Aboriginal Australian weapons: the kodj and the leangle with parrying shield. We present the world's first evaluation of striking biomechanics and human and weapon efficiency regarding this class of implement. Results demonstrate the leangle is far more effective at delivering devastating blows to the human body, while the kodj-a multi-functional tool-is more efficient for a human to manoeuvre and still capable of delivering severe blows that can cause death. Together, these data provide the beginnings of an in-depth understanding of how hand-held weaponry has impacted the human body throughout the deep past.
Assuntos
Havaiano Nativo ou Outro Ilhéu do Pacífico , Armas , Humanos , Austrália , Agressão , Fenômenos Biomecânicos , Povos Aborígenes Australianos e Ilhéus do Estreito de TorresRESUMO
Semi-recumbent cycling performed from a wheelchair is a popular rehabilitation exercise following spinal cord injury (SCI) and is often paired with functional electrical stimulation. However, biomechanical assessment of this cycling modality is lacking, even in unimpaired populations, hindering the development of personalised and safe rehabilitation programs for those with SCI. This study developed a computational pipeline to determine lower limb kinematics, kinetics, and joint contact forces (JCF) in 11 unimpaired participants during voluntary semi-recumbent cycling using a rehabilitation ergometer. Two cadences (40 and 60 revolutions per minute) and three crank powers (15 W, 30 W, and 45 W) were assessed. A rigid body model of a rehabilitation ergometer was combined with a calibrated electromyogram-informed neuromusculoskeletal model to determine JCF at the hip, knee, and ankle. Joint excursions remained consistent across all cadence and powers, but joint moments and JCF differed between 40 and 60 revolutions per minute, with peak JCF force significantly greater at 40 compared to 60 revolutions per minute for all crank powers. Poor correlations were found between mean crank power and peak JCF across all joints. This study provides foundation data and computational methods to enable further evaluation and optimisation of semi-recumbent cycling for application in rehabilitation after SCI and other neurological disorders.
Assuntos
Ciclismo , Humanos , Masculino , Ciclismo/fisiologia , Adulto , Fenômenos Biomecânicos , Feminino , Articulação do Quadril/fisiologia , Traumatismos da Medula Espinal/fisiopatologia , Traumatismos da Medula Espinal/reabilitação , Articulação do Joelho/fisiologia , Articulação do Tornozelo/fisiologia , Modelos Biológicos , Eletromiografia/métodosRESUMO
Altered semitendinosus (ST) morphology and distal tendon insertion following anterior cruciate ligament reconstruction (ACLR) may reduce knee flexion torque generating capacity of the hamstrings via impaired ST force generation and/or moment arm. This study used a computational musculoskeletal model to simulate mechanical consequences of tendon harvest for ACLR on ST function by modeling changes in ST muscle tendon insertion point, moment arm, and torque generating capacity across a physiological range of motion. Simulated ST function was then compared between ACLR and uninjured contralateral limbs. Magnetic resonance imaging from 18 individuals with unilateral history of ACLR involving a hamstring autograft was used to analyse bilateral hamstring muscle (ST, semimembranosus, bicep femoris long head and short head) morphology and distal ST tendon insertion. The ACLR cohort was sub-grouped into those with and without ST regeneration. For each participant with ST regeneration (n = 7), a personalized musculoskeletal model was created including postoperative remodeling of ST using OpenSim 4.1. Knee flexion and internal rotation moment arms and torque generating capacities of hamstrings were evaluated. Bilateral differences were calculated with an asymmetry index (%) ([unaffected limb-affected limb]/[unaffected limb + affected limb]*100%). Smaller moment arms or knee torques within injured compared to uninjured contralateral limbs were considered a deficit. Compared to uninjured contralateral limbs, ACLR limbs with tendon regeneration (n = 7) had minor reductions in knee flexion (5.80% [95% confidence interval (CI) = 3.97-7.62]) and internal rotation (4.92% [95% CI = 2.77-7.07]) moment arms. Decoupled from muscle morphology, altered ST moment arms in ACLR limbs with tendon regeneration resulted in negligible deficits in knee flexion (1.20% [95% CI = 0.34-2.06]) and internal rotation (0.24% [95% CI = 0.22-0.26]) torque generating capacity compared to uninjured contralateral limbs. Coupled with muscle morphology, ACLR limbs with tendon regeneration had substantial deficits in knee flexion (19.32% [95% CI = 18.35-20.28]) and internal rotation (15.49% [95% CI = 14.56-16.41]) torques compared to uninjured contralateral limbs. Personalized musculoskeletal models with measures of ST distal insertion and muscle morphology provided unique insights into post-ACLR ST and hamstring function. Deficits in knee flexor and internal rotation moment arms and torque generating capacities were evident in those with ACLR even when tendon regeneration occurred. Future studies may wish to implement this framework in personalized musculoskeletal models following ACLR to better understand individual muscle function for injury prevention and treatment evaluation.
Assuntos
Reconstrução do Ligamento Cruzado Anterior , Músculos Isquiossurais , Tendões dos Músculos Isquiotibiais , Torque , Humanos , Masculino , Adulto , Músculos Isquiossurais/transplante , Músculos Isquiossurais/fisiologia , Tendões dos Músculos Isquiotibiais/transplante , Adulto Jovem , Feminino , Amplitude de Movimento Articular , Fenômenos BiomecânicosRESUMO
The distal semitendinosus tendon is commonly harvested for anterior cruciate ligament reconstruction, inducing substantial morbidity at the knee. The aim of this study was to probe how morphological changes of the semitendinosus muscle after harvest of its distal tendon for anterior cruciate ligament reconstruction affects knee flexion strength and whether the knee flexor synergists can compensate for the knee flexion weakness. Ten participants 8-18 months after anterior cruciate ligament reconstruction with an ipsilateral distal semitendinosus tendon autograft performed isometric knee flexion strength testing (15°, 45°, 60°, and 90°; 0° = knee extension) positioned prone on an isokinetic dynamometer. Morphological parameters extracted from magnetic resonance images were used to inform a musculoskeletal model. Knee flexion moments estimated by the model were then compared with those measured experimentally at each knee angle position. A statistically significant between-leg difference in experimentally-measured maximal isometric strength was found at 60° and 90°, but not 15° or 45°, of knee flexion. The musculoskeletal model matched the between-leg differences observed in experimental knee flexion moments at 15° and 45° but did not well estimate between-leg differences with a more flexed knee, particularly at 90°. Further, the knee flexor synergists could not physiologically compensate for weakness in deep knee flexion. These results suggest additional factors other than knee flexor muscle morphology play a role in knee flexion weakness following anterior cruciate ligament reconstruction with a distal semitendinosus tendon graft and thus more work at neural and microscopic levels is required for informing treatment and rehabilitation in this demographic.