Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-39105430

RESUMO

PURPOSE: Anterior cruciate ligament (ACL) rupture is increasingly common in paediatric and adolescent populations, typically requiring surgical ACL reconstruction (ACLR) to restore knee stability. However, ACLR substantially alters knee biomechanics (e.g., motion and tissue mechanics) placing the patient at elevated risk of early-onset knee osteoarthritis. METHODS: This study employed a linked neuromusculoskeletal (NMSK)-finite element (FE) model to determine effects of four critical ACLR surgical parameters (graft type, size, location and pre-tension) on tibial articular cartilage stresses in three paediatric knees of different sizes during walking. Optimal surgical combinations were defined by minimal kinematic and tibial cartilage stress deviations in comparison to a corresponding intact healthy knee, with substantial deviations defined by normalized root mean square error (nRMSE) > 10%. RESULTS: Results showed unique trends of principal stress deviations across knee sizes with small knee showing least deviation from intact knee, followed by large- and medium-sized knees. The nRMSE values for cartilage stresses displayed notable variability across different knees. Surgical combination yielding the highest nRMSE in comparison to the one with lowest nRMSE resulted in an increase of maximum principal stress on the medial tibial cartilage by 18.0%, 6.0% and 1.2% for small, medium and large knees, respectively. Similarly, there was an increase of maximum principal stress on lateral tibial cartilage by 11.2%, 4.1% and 12.7% for small, medium and large knees, respectively. Knee phenotype and NMSK factors contributed to deviations in knee kinematics and tibial cartilage stresses. Although optimal surgical configurations were found for each knee size, no generalizable trends emerged emphasizing the subject-specific nature of the knee and neuromuscular system. CONCLUSION: Study findings underscore subject-specific complexities in ACLR biomechanics, necessitating personalized surgical planning for effective restoration of native motion and tissue mechanics. Future research should expand investigations to include a broader spectrum of subject-specific factors to advance personalized surgical planning. LEVEL OF EVIDENCE: Level III.

2.
Comput Methods Programs Biomed ; 248: 108132, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38503071

RESUMO

BACKGROUND AND OBJECTIVE: Incidence of paediatric anterior cruciate ligament (ACL) rupture has increased substantially over recent decades. Following ACL rupture, ACL reconstruction (ACLR) surgery is typically performed to restore passive knee stability. This surgery involves replacing the failed ACL with a graft, however, surgeons must select from range of surgical parameters (e.g., type, size, insertion, and pre-tension) with no robust evidence guiding these decisions. This study presents a systemmatic computational approach to study effects of surgical parameter variation on kinematics of paediatric knees. METHODS: This study used sequentially-linked neuromusculoskeletal (NMSK) finite element (FE) models of three paediatric knees to estimate the: (i) sensitivity of post-operative knee kinematics to four surgical parameters (type, size, insertion, and pre-tension) through multi-input multi-output sensitivity analysis; (ii) influence of motion and loading conditions throughout stance phase of walking gait on sensitivity indices; and (iii) influence of subject-specific anatomy (i.e., knee size) on sensitivivty indices. A previously validated FE model of the intact knee for each subject served as a reference against which ACLR knee kinematics were compared. RESULTS: Sensitivity analyses revealed significant influences of surgical parameters on ACLR knee kinematics, albeit without discernible trend favouring any one parameter. Graft size and pre-tension were primary drivers of variation in knee translations and rotations, however, their effects fluctuated across stance indicating motion and loading conditions affect system sensitivity to surgical parameters. Importantly, the sensitivity of knee kinematics to surgical parameter varied across subjects, indicating geometry (i.e., knee size) influenced system sensitivity. Notably, alterations in graft parameters yielded substantial effects on kinematics (normalized root-mean-square-error > 10 %) compared to intact knee models, indicating surgical parameters vary post-operative knee kinematics. CONCLUSIONS: Overall, this initial study highlights the importance of surgical parameter selection on post-operative kinematics in the paediatric ACLR knee, and provides evidence of the need for personalized surgical planning to ultimately enhance patient outcomes.


Assuntos
Lesões do Ligamento Cruzado Anterior , Reconstrução do Ligamento Cruzado Anterior , Humanos , Criança , Análise de Elementos Finitos , Fenômenos Biomecânicos , Amplitude de Movimento Articular , Articulação do Joelho/cirurgia , Lesões do Ligamento Cruzado Anterior/cirurgia
3.
PLoS One ; 19(2): e0297899, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38359050

RESUMO

Knee function is rarely measured objectively during functional tasks following total knee arthroplasty. Inertial measurement units (IMU) can measure knee kinematics and range of motion (ROM) during dynamic activities and offer an easy-to-use system for knee function assessment post total knee arthroplasty. However, IMU must be validated against gold standard three-dimensional optical motion capture systems (OMC) across a range of tasks if they are to see widespread uptake. We computed knee rotations and ROM from commercial IMU sensor measurements during walking, squatting, sit-to-stand, stair ascent, and stair descent in 21 patients one-year post total knee arthroplasty using two methods: direct computation using segment orientations (r_IMU), and an IMU-driven iCloud-based interactive lower limb model (m_IMU). This cross-sectional study compared computed knee angles and ROM to a gold-standard OMC and inverse kinematics method using Pearson's correlation coefficient (R) and root-mean-square-differences (RMSD). The r_IMU and m_IMU methods estimated sagittal plane knee angles with excellent correlation (>0.95) compared to OMC for walking, squatting, sit-to-stand, and stair-ascent, and very good correlation (>0.90) for stair descent. For squatting, sit-to-stand, and walking, the mean RMSD for r_IMU and m_IMU compared to OMC were <4 degrees, < 5 degrees, and <6 degrees, respectively but higher for stair ascent and descent (~12 degrees). Frontal and transverse plane knee kinematics estimated using r_IMU and m_IMU showed poor to moderate correlation compared to OMC. There were no differences in ROM measurements during squatting, sit-to-stand, and walking across the two methods. Thus, IMUs can measure sagittal plane knee angles and ROM with high accuracy for a variety of tasks and may be a useful in-clinic tool for objective assessment of knee function following total knee arthroplasty.


Assuntos
Artroplastia do Joelho , Humanos , Fenômenos Biomecânicos , Atividades Cotidianas , Estudos Transversais , Articulação do Joelho/cirurgia , Caminhada , Amplitude de Movimento Articular , Extremidade Inferior/cirurgia , Marcha
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA