Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
1.
Curr Microbiol ; 81(3): 84, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38294725

RESUMO

Drought is a global phenomenon affecting plant growth and productivity, the severity of which has impacts around the whole world. A number of approaches, such as agronomic, conventional breeding, and genetic engineering, are followed to increase drought resilience; however, they are often time consuming and non-sustainable. Plant growth-promoting microorganisms are used worldwide to mitigate drought stress in crop plants. These microorganisms exhibit multifarious traits, which not only help in improving plant and soil health, but also demonstrate capabilities in ameliorating drought stress. The present review highlights various adaptive strategies shown by these microbes in improving drought resilience, such as modulation of various growth hormones and osmoprotectant levels, modification of root morphology, exopolysaccharide production, and prevention of oxidative damage. Gene expression patterns providing an adaptive edge for further amelioration of drought stress have also been studied in detail. Furthermore, the practical applications of these microorganisms in soil are highlighted, emphasizing their potential to increase crop productivity without compromising long-term soil health. This review provides a comprehensive coverage of plant growth-promoting microorganisms-mediated drought mitigation strategies, insights into gene expression patterns, and practical applications, while also guiding future research directions.


Assuntos
Agricultura , Secas , Engenharia Genética , Estresse Oxidativo , Solo
2.
World J Microbiol Biotechnol ; 39(12): 328, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37792124

RESUMO

Plant growth promoting microorganisms have various implications for plant growth and drought stress alleviation; however, the roles of archaea have not been explored in detail. Herein, present study was aimed for elucidating potential of haloarchaea (Halolamina pelagica CDK2) on plant growth under drought stress. Results showed that haloarchaea inoculated wheat plants exhibited significant improvement in total chlorophyll (100%) and relative water content (30.66%) compared to the uninoculated water-stressed control (30% FC). The total root length (2.20-fold), projected area (1.60-fold), surface area (1.52-fold), number of root tips (3.03-fold), number of forks (2.76-fold) and number of links (1.45-fold) were significantly higher in the inoculated plants than in the uninoculated water stressed control. Additionally, the haloarchaea inoculation resulted in increased sugar (1.50-fold), protein (2.40-fold) and activity of antioxidant enzymes such as superoxide dismutase (1.93- fold), ascorbate peroxidase (1.58-fold), catalase (2.30-fold), peroxidase (1.77-fold) and glutathione reductase (4.70-fold), while reducing the accumulation of proline (46.45%), glycine betaine (35.36%), lipid peroxidation (50%), peroxide and superoxide radicals in wheat leaves under water stress. Furthermore, the inoculation of haloarchaea significantly enhanced the expression of stress-responsive genes (DHN, DREB, L15, and TaABA-8OH) and wheat vegetative growth under drought stress over the uninoculated water stressed control. These results provide novel insights into the plant-archaea interaction for plant growth and stress tolerance in wheat and pave the way for future research in this area.


Assuntos
Halobacteriaceae , Triticum , Secas , Peroxidase/genética
3.
J Appl Microbiol ; 133(3): 1245-1272, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35588278

RESUMO

Agriculture faces challenges to fulfil the rising food demand due to shortage of arable land and various environmental stressors. Traditional farming technologies help in fulfilling food demand but they are harmful to humans and environmental sustainability. The food production along with agro-environmental sustainability could be achieved by encouraging farmers to use agro-environmental sustainable products such as biofertilizers and biopesticides consisting of live microbes or plant extract instead of chemical-based inputs. The eco-friendly formulations play a significant role in plant growth promotion, crop yield and repairing degraded soil texture and fertility sustainably. Mineral solubilizing microbes that provide vital nutrients like phosphorus, potassium, zinc and selenium are essential for plant growth and development and could be developed as biofertilizers. These microbes could be plant associated (rhizospheric, endophytic and phyllospheric) or inhabit the bulk soil and diverse extreme habitats. Mineral solubilizing microbes from soil, extreme environments, surface and internal parts of the plant belong to diverse phyla such as Ascomycota, Actinobacteria, Basidiomycota, Bacteroidetes, Chlorobi, Cyanobacteria, Chlorophyta, Euryarchaeota, Firmicutes, Gemmatimonadetes, Mucoromycota, Proteobacteria and Tenericutes. Mineral solubilizing microbes (MSMs) directly or indirectly stimulate plant growth and development either by releasing plant growth regulators; solubilizing phosphorus, potassium, zinc, selenium and silicon; biological nitrogen fixation and production of siderophores, ammonia, hydrogen cyanide, hydrolytic enzymes and bioactive compound/secondary metabolites. Biofertilizer developed using mineral solubilizing microbes is an eco-friendly solution to the sustainable food production system in many countries worldwide. The present review deals with the biodiversity of mineral solubilizing microbes, and potential roles in crop improvement and soil well-being for agricultural sustainability.


Assuntos
Microbiota , Selênio , Agricultura , Bactérias/genética , Bactérias/metabolismo , Fertilizantes/microbiologia , Humanos , Fósforo/metabolismo , Plantas/microbiologia , Potássio/metabolismo , Solo , Microbiologia do Solo , Zinco/metabolismo
4.
World J Microbiol Biotechnol ; 38(12): 252, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36316502

RESUMO

Chitinases are a group of enzymes that catalyze chitin hydrolysis and are present in all domains of life. Chitinases belong to different glycosyl hydrolase families with great diversity in their sequences. Microorganisms such as bacteria and fungi produce chitinases for nutrition, and energy, and to parasitize the chitinous hosts. But chitinases from bacteria are of special interest due to their ubiquitous nature and ability to perform under extreme conditions. Chitinases produced by bacteria have been explored for their use in agriculture and industry. In agriculture, their main role is to control chitin-containing insect pests, fungal pathogens, and nematodes. In the seafood industry, they found their role in the management of processing wastes which are mainly chitinous substances. Chitinases are also used to synthesize low molecular weight chitooligomers which are proven bioactive compounds with activities such as anti-tumour, antimicrobial, and immunity modulation. Considering their importance in ecology and biotechnological applications, several bacterial chitinases have been studied in the last two decades. Despite their potential, bacterial chitinases have a few limitations such as low production and lack of secretion systems which make the wild-type enzymes unfit for their applications in industries and other allied sectors. This review is an attempt to collate significant works in bacterial chitinases and their application in various industries and the employment of various tools and techniques for improvement to meet industrial requirements.


Assuntos
Bactérias , Quitinases , Bactérias/enzimologia , Biotecnologia/métodos , Quitina , Quitinases/biossíntese , Hidrólise
5.
Artigo em Inglês | MEDLINE | ID: mdl-33351740

RESUMO

A moderately halophilic, Gram-stain-negative, aerobic bacterium, strain D1-1T, belonging to the genus Halomonas, was isolated from soil sampled at Pentha beach, Odisha, India. Phylogenetic trees reconstructed based on 16S rRNA genes and multilocus sequence analysis of gyrB and rpoD genes revealed that strain D1-1T belonged to the genus Halomonas and was most closely related to Halomonas alimentaria YKJ-16T (98.1 %) followed by Halomonas ventosae Al12T (97.5 %), Halomonas sediminicola CPS11T (97.5 %), Halomonas fontilapidosi 5CRT (97.4 %) and Halomonas halodenitrificans DSM 735T (97.2 %) on the basis of 16S rRNA gene sequence similarity. Sequence identities with other species within the genus were lower than 97.0 %. The digital DNA-DNA hybridization (dDDH) and average nucleotide identity (ANI) values of 22.4-30 % and 79.5-85.4 % with close relatives of H. halodenitrificans DSM 735T, H. alimentaria YKJ-16T, H. ventosae Al12T and H. fontilapidosi 5CRT were lower than the threshold recommended for species delineation (70 % and 95-96 % for dDDH and ANI, respectively). Further, strain D1-1T formed yellow-coloured colonies; cells were rod-shaped, motile with optimum growth at 30 °C (range, 4-45 °C) and 2-8 % NaCl (w/v; grew up to 24 % NaCl). The major fatty acids were summed feature 8 (C18 : 1 ω7c/C18 : 1 ω6c), summed feature 3 (C16 : 1 ω7c/C16 : 1 ω6c) and C16 : 0 and the main respiratory quinone was ubiquinone Q-9 in line with description of the genus. Based on its chemotaxonomic and phylogenetic characteristics and genome uniqueness, strain D1-1T represents a novel species in the genus Halomonas, for which we propose the name Halomonas icarae sp. nov., within the family Halomonadaceae. The type strain is D1-1T (=JCM 33602T=KACC 21317T=NAIMCC-B-2254T).


Assuntos
Halomonas/classificação , Filogenia , Microbiologia do Solo , Técnicas de Tipagem Bacteriana , Composição de Bases , Praias , DNA Bacteriano/genética , Ácidos Graxos/química , Genes Bacterianos , Halomonas/isolamento & purificação , Índia , Hibridização de Ácido Nucleico , Pigmentação , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Ubiquinona/química
6.
Mol Biol Rep ; 48(12): 8111-8122, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34716867

RESUMO

Transgenic technology could hold the key to help farmers to fulfill the ever increasing fast-paced global demand for food. Microbes have always wondered us by their potentials and thriving abilities in the extreme conditions. The use of microorganisms as a gene source in transgenic development is a promising option for crop improvement. The aforesaid approach has already for improving the characteristics of food, industrial, horticulture, and floriculture crops. Many transgenic crops containing microbial genes have been accepted by the farmers and consumers worldwide over the last few decades. The acceptance has brought remarkable changes in the status of society by providing food safety, economic, and health benefits. Among transgenic plants harboring microbial genes, Bacillus thuringiensis (Bt) based transgenic were more focused and documented owing to its significant performance in controlling insects. However, other microbial gene-based transgenic plants have also reserved their places in the farmer's field globally. Therefore, in this review, we have thrown some light on successful transgenic plants harboring microbial genes other than Bt, having application in agriculture. Also, we presented the role of microbial genetic element and product thereof in the inception of biotechnology and discussed the potential of microbial genes in crop improvement.


Assuntos
Agricultura/tendências , Controle Biológico de Vetores/tendências , Plantas Geneticamente Modificadas/metabolismo , Animais , Bacillus thuringiensis/genética , Toxinas de Bacillus thuringiensis , Proteínas de Bactérias/genética , Produtos Agrícolas/genética , Endotoxinas , Genes Microbianos , Humanos , Insetos/genética , Resistência a Inseticidas , Controle Biológico de Vetores/métodos , Plantas Geneticamente Modificadas/genética
7.
Curr Microbiol ; 79(1): 6, 2021 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-34905096

RESUMO

Microorganisms due, to their immense metabolic diversity, have the potential to augment the uptake of iron and zinc in addition to other important nutrients in plants. In the present work, 129 different strains of endophytic bacteria were retrieved from stems and leaves of maize. Qualitative screening of these endophytes showed that 24.5% of these isolates were siderophore producers, while 14% could solubilize insoluble zinc compounds and 33% of them had phytase activity. Based on zinc solubilization efficiency and siderophore production ability, 10 isolates each from zinc solubilizers and siderophore producers were selected. Molecular identification indicated that the selected bacteria belonged to diverse genera Microbacterium, Pseudonocardia, Bacillus, Cellulosimicrobium, Staphylococcus, Luteimonas, Bordetella, Brevundimonas, Streptomyces, Cupriavidus, Sphingomonas, Ralstonia, Ochrobactrum, Conyzicola, Paenibacillus and Leifsonia. Quantitative analyses of Zn solubilization using Atomic absorption spectrophotometry (AAS) revealed that Microbacterium hydrothermale M10 and M. proteolyticum B2 were potential solubilizers of different forms of insoluble zinc compounds viz. ZnCO3 (56.63-89.88 ppm), ZnO (106.38-120.08 ppm) and ZnS (3.62-5.56 ppm). Similarly, quantitative estimation of siderophore production activity revealed two endophytes viz. Bacillus altitudinis C7 (97.25% siderophore units) and Pseudonocardia alni M29 (92.05% siderophore units) as potential siderophore producers. These endophytes with potential to produce siderophores and phytases and ability to solubilize zinc can be an important starting material for trials on field to improve Fe and Zn content in edible portion of food crops.


Assuntos
Cupriavidus , Endófitos , Biofortificação , Endófitos/genética , Micronutrientes , Raízes de Plantas , Zea mays
8.
World J Microbiol Biotechnol ; 37(3): 54, 2021 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-33604719

RESUMO

DNA barcoding has proven to be a versatile tool for plant disease diagnostics in the genomics era. As the mass parallel and next generation sequencing techniques gained importance, the role of specific barcodes came under immense scrutiny. Identification and accurate classification of phytopathogens need a universal approach which has been the main application area of the concept of barcode. The present review entails a detailed description of the present status of barcode application in plant disease diagnostics. A case study on the application of Internal Transcribed Spacer (ITS) as barcode for Aspergillus and Fusarium spp. sheds light on the requirement of other potential candidates as barcodes for accurate identification. The challenges faced while barcoding novel pathogens have also been discussed with a comprehensive outline of integrating more recent technologies like meta-barcoding and genome skimming for detecting plant pathogens.


Assuntos
Código de Barras de DNA Taxonômico/métodos , Fungos/genética , Fungos/isolamento & purificação , Doenças das Plantas/microbiologia , Aspergillus/classificação , Aspergillus/genética , Aspergillus/isolamento & purificação , DNA Fúngico , Fungos/classificação , Fusarium/classificação , Fusarium/genética , Fusarium/isolamento & purificação , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Oomicetos/genética , Oomicetos/isolamento & purificação , Filogenia , Plantas/microbiologia
9.
Antonie Van Leeuwenhoek ; 113(8): 1075-1107, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32488494

RESUMO

Endophytic microbes are known to live asymptomatically inside their host throughout different stages of their life cycle and play crucial roles in the growth, development, fitness, and diversification of plants. The plant-endophyte association ranges from mutualism to pathogenicity. These microbes help the host to combat a diverse array of biotic and abiotic stressful conditions. Endophytic microbes play a major role in the growth promotion of their host by solubilizing of macronutrients such as phosphorous, potassium, and zinc; fixing of atmospheric nitrogen, synthesizing of phytohormones, siderophores, hydrogen cyanide, ammonia, and act as a biocontrol agent against wide array of phytopathogens. Endophytic microbes are beneficial to plants by directly promoting their growth or indirectly by inhibiting the growth of phytopathogens. Over a long period of co-evolution, endophytic microbes have attained the mechanism of synthesis of various hydrolytic enzymes such as pectinase, xylanases, cellulase, and proteinase which help in the penetration of endophytic microbes into tissues of plants. The effective usage of endophytic microbes in the form of bioinoculants reduce the usage of chemical fertilizers. Endophytic microbes belong to different phyla such as Actinobacteria, Acidobacteria, Bacteroidetes, Deinococcus-thermus, Firmicutes, Proteobacteria, and Verrucomicrobia. The most predominant and studied endophytic bacteria belonged to Proteobacteria followed by Firmicutes and then by Actinobacteria. The most dominant among reported genera in most of the leguminous and non-leguminous plants are Bacillus, Pseudomonas, Fusarium, Burkholderia, Rhizobium, and Klebsiella. In future, endophytic microbes have a wide range of potential for maintaining health of plant as well as environmental conditions for agricultural sustainability. The present review is focused on endophytic microbes, their diversity in leguminous as well as non-leguminous crops, biotechnological applications, and ability to promote the growth of plant for agro-environmental sustainability.


Assuntos
Bactérias/classificação , Biodiversidade , Produtos Agrícolas/microbiologia , Endófitos/classificação , Endófitos/fisiologia , Desenvolvimento Vegetal , Agricultura/métodos , Endófitos/enzimologia , Fixação de Nitrogênio , Reguladores de Crescimento de Plantas , Raízes de Plantas/microbiologia , Simbiose
10.
BMC Biotechnol ; 19(1): 69, 2019 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-31655574

RESUMO

BACKGROUND: Conventional plant DNA isolation methods are complex, time consuming and require technical expertise. These limitations were overcome using the DNA isolation kits which, however significantly add to the research costs. Hence the present study was aimed to develop a high throughput, rapid and inexpensive method of PCR ready DNA template preparation from plant materials. METHODS: Concentration of SDS in lysis buffer, amount of starting material, period and temperature for lysis were optimized for obtaining PCR ready templates from plant materials. The method was tested using RAPD and ITS specific primers for different plant species like rice, wheat, mustard, pea, soybean, pigeonpea, tomato, maize, march lilly, bougainvillea, Indian blanket flower, nerium, petunia, purple pirouette petunia, moses-in-the-cradle, golden cane palm, duranta, periwinkle, chrysanthemum and two xerophytes viz. Dipterygium glaucum and Crotaleria burhia. SSR markers RM18398 and RM26108 showed successful amplification in rice varieties Improved Pusa Basmati 1 and KS Dev 12. The effectiveness of the method was tested using fresh as well as 1 year old tissues. The storability of the lysate was also tested. RESULTS: In this report, we developed a novel method called rapid high throughput template preparation (rHTTP) method to prepare PCR ready DNA templates. Most striking feature of this technique is that it can be done anywhere where water can be boiled by any means. Using rHTTP method, PCR ready templates can be prepared in just 10 min. Robust and reproducible amplification for all the test plants were recorded with RAPD, plant ITS primers and SSR markers following this method. rHTTP methods works well for both fresh as well as old plant tissues. The lysates had a shelf life of 1 month when stored at 4 °C and 3 days when stored at room temperature. CONCLUSIONS: rHTTP method has several advantages over the other protocols like ease of execution, no requirement of tissue grinding/liquid nitrogen/hazardous chemicals and above all, equally effective for both fresh and old samples. Using this method, costs per prep comes down ~ 10-50 times as compared to most commercial kits. This method can be used for on-field experiments like molecular diagnostics, varietal identification etc.


Assuntos
DNA de Plantas/genética , Reação em Cadeia da Polimerase/métodos , Primers do DNA/genética , Solanum lycopersicum/genética , Oryza/genética , Poaceae/genética , Técnica de Amplificação ao Acaso de DNA Polimórfico/métodos , Triticum/genética , Zea mays/genética
11.
J Basic Microbiol ; 59(6): 632-644, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30900762

RESUMO

Microbial biofilms are gaining importance in agriculture, due to their multifaceted agronomic benefits and resilience to environmental fluctuations. This study focuses on comparing the influence of single inoculation-Azotobacter chroococcum (Az) or Trichoderma viride (Tv) and their biofilm (Tv-Az), on soil and plant metabolic activities in wheat and cotton grown under Phytotron conditions. Tv-Az proved superior to all the other treatments in terms of better colonisation, plant growth attributes and 10-40% enhanced availability of macronutrients and micronutrients in the soil, over control. Confocal and scanning electron microscopy showed that the cells attached to the root tips initially, followed by their proliferation along the surface of the roots. Soil polysaccharides, proteins and dehydrogenase activity showed several fold enhancement in Tv-Az biofilm inoculated samples. Time course studies revealed that the population of Az and Tv in the rhizoplane and rhizosphere was significantly higher with a 0.14-0.31 log colony-forming unit (CFU) increase in the biofilm-inoculated treatment in both crops. Enhancement in soil biological activities was facilitated by the improved colonisation of the biofilm, due to the synergistic association between Tv and Az. This demonstrates the utility of Tv-Az biofilm as a multifunctional plant growth promoting and soil fertility enhancing option in agriculture.


Assuntos
Azotobacter/fisiologia , Biofilmes/crescimento & desenvolvimento , Gossypium/crescimento & desenvolvimento , Nutrientes/análise , Solo/química , Trichoderma/fisiologia , Triticum/crescimento & desenvolvimento , Inoculantes Agrícolas/crescimento & desenvolvimento , Inoculantes Agrícolas/fisiologia , Disponibilidade Biológica , Gossypium/microbiologia , Nutrientes/farmacocinética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/microbiologia , Rizosfera , Microbiologia do Solo , Triticum/microbiologia
12.
Indian J Microbiol ; 59(3): 344-350, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31388212

RESUMO

Iron (Fe) is one of the key micronutrients essential for plant growth, yield and quality. Wheat (Triticum aestivum) and soybean (Glycine max) are important food crops but have relatively low Fe content in grains/seeds. Foliar application of Fe-invigorated bacteriosiderophore might increase Fe content in grain as well as improve overall plant growth. From a preliminary experiment conducted on soybean using 20 bacterial strains, Arthrobacter sp. (low siderophore producing) and Lysinibacillus fusiformis (high siderophore producing) were selected based on amount of siderophore produced and response of plants. This result was validated on field grown soybean and wheat crops by applying bacteriosiderophore with or without Fe on foliage. Siderophore was applied at flowering stage in both crops and observations were recorded on the sixth day after foliar spray. Significantly higher shoot biomass, area of leaves or flag leaf and tissue Fe concentration was recorded by siderophore produced by L. fusiformis with Fe as compared to Arthrobacter sp. In comparison to control (water), application of Fe fortified bacterial siderophore resulted not only in increased grain yield by 45% and 28% in wheat and soybean, respectively but also enhanced Fe concentration in grains by 1.7-fold in soybean to 2.0-fold in wheat. Partitioning of Fe in grain was higher in wheat as compared to soybean after foliar spray. Thus, we reported for the first time that bacteriosiderophore with added Fe as foliar application could be an economical and targeted agronomic approach towards Fe fortification in crop plants.

14.
J Basic Microbiol ; 57(7): 548-573, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28407275

RESUMO

Microbial biofilms are a fascinating subject, due to their significant roles in the environment, industry, and health. Advances in biochemical and molecular techniques have helped in enhancing our understanding of biofilm structure and development. In the past, research on biofilms primarily focussed on health and industrial sectors; however, lately, biofilms in agriculture are gaining attention due to their immense potential in crop production, protection, and improvement. Biofilms play an important role in colonization of surfaces - soil, roots, or shoots of plants and enable proliferation in the desired niche, besides enhancing soil fertility. Although reports are available on microbial biofilms in general; scanty information is published on biofilm formation by agriculturally important microorganisms (bacteria, fungi, bacterial-fungal) and their interactions in the ecosystem. Better understanding of agriculturally important bacterial-fungal communities and their interactions can have several implications on climate change, soil quality, plant nutrition, plant protection, bioremediation, etc. Understanding the factors and genes involved in biofilm formation will help to develop more effective strategies for sustainable and environment-friendly agriculture. The present review brings together fundamental aspects of biofilms, in relation to their formation, regulatory mechanisms, genes involved, and their application in different fields, with special emphasis on agriculturally important microbial biofilms.


Assuntos
Agricultura , Fenômenos Fisiológicos Bacterianos , Biofilmes , Microbiologia do Solo , Agrobacterium/fisiologia , Anabaena/fisiologia , Bacillus/fisiologia , Bactérias/metabolismo , Aderência Bacteriana , Mudança Climática , Ecossistema , Fungos/fisiologia , Interações Microbianas , Raízes de Plantas/microbiologia , Plantas/microbiologia , Percepção de Quorum
15.
Indian J Microbiol ; 57(1): 48-59, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28148979

RESUMO

Biofilmed biofertilizers have emerged as a new improved inoculant technology to provide efficient nutrient and pest management and sustain soil fertility. In this investigation, development of a Trichoderma viride-Mesorhizobium ciceri biofilmed inoculant was undertaken, which we hypothesized, would possess more effective biological nitrogen fixing ability and plant growth promoting properties. As a novel attempt, we selected Mesorhizobium ciceri spp. with good antifungal attributes with the assumption that such inoculants could also serve as biocontrol agents. These biofilms exhibited significant enhancement in several plant growth promoting attributes, including 13-21 % increase in seed germination, production of ammonia, IAA and more than onefold to twofold enhancement in phosphate solubilisation, when compared to their individual partners. Enhancement of 10-11 % in antifungal activity against Fusarium oxysporum f. sp. ciceri was also recorded, over the respective M. ciceri counterparts. The effect of biofilms and the M. ciceri cultures individual on growth parameters of chickpea under pathogen challenged soil illustrated that the biofilms performed at par with the M. ciceri strains for most plant biometrical and disease related attributes. Elicitation of defense related enzymes like l-phenylalanine ammonia lyase, peroxidase and polyphenol oxidase was higher in M. ciceri/biofilm treated plants as compared to uninoculated plants under pathogen challenged soil. Further work on the signalling mechanisms among the partners and their tripartite interactions with host plant is envisaged in future studies.

16.
Pak J Pharm Sci ; 30(1): 113-126, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28603121

RESUMO

Inhibition of intestinal α-amylase and α-glucosidase is an important strategy to regulate diabetes mellitus (DM). Antioxidants from plants are widely regarded in the prevention of diabetes. Fruits of Elettaria cardamomum (L.) Maton (Zingiberaceae) and Piper cubeba L. f. (Piperaceae) and flowers of Plumeria rubra L. (Apocynaceae) are traditionally used to cure DM in different countries. However, the role of these plants has been grossly under reported and is yet to receive proper scientific evaluation with respect to understand their traditional role in the management of diabetes especially as digestive enzymes inhibitors. Hence, methanol and aqueous extracts of the aforementioned plants were evaluated for their in vitro α-glucosidase and α-amylase inhibition at 1 mg/mL and quantification of their antioxidant properties (DPPH, FRAP tests, total phenolic and total flavonoids contents). In vitro optimization studies for the extracts were also performed to enhance in vitro biological activities. The % inhibition of α-glucosidase by the aqueous extracts of the fruits of E. cardamomum, P. cubeba and flowers of P. rubra were 10.41 (0.03), 95.19 (0.01), and -2.92 (0.03), while the methanol extracts exhibited % inhibition 13.73 (0.02), 92.77 (0.01), and -0.98 (0.01), respectively. The % inhibition of α-amylase by the aqueous extracts were 82.99 (0.01), 64.35 (0.01), and 20.28 (0.02), while the methanol extracts displayed % inhibition 39.93 (0.01), 31.06 (0.02), and 39.40 (0.01), respectively. Aqueous extracts displayed good in vitro antidiabetic and antioxidant activities. Moreover, in vitro optimization experiments helped to increase the α-glucosidase inhibitory activity of E. cardamomum. Our findings further justify the traditional claims of these plants as folk medicines to manage diabetes, however, through digestive enzymes inhibition effect.


Assuntos
Antioxidantes/farmacologia , Apocynaceae/química , Hipoglicemiantes/farmacologia , Lignanas/farmacologia , Piper/química , Extratos Vegetais/farmacologia , Zingiberaceae/química , Antioxidantes/química , Antioxidantes/isolamento & purificação , Compostos de Bifenilo/química , Cloretos/química , Compostos Férricos/química , Flores/química , Frutas/química , Inibidores de Glicosídeo Hidrolases/isolamento & purificação , Inibidores de Glicosídeo Hidrolases/farmacologia , Hipoglicemiantes/química , Hipoglicemiantes/isolamento & purificação , Lignanas/química , Lignanas/isolamento & purificação , Metanol/química , Oxirredução , Fitoterapia , Picratos/química , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Plantas Medicinais , Solventes/química , Água/química
17.
J Basic Microbiol ; 56(3): 294-307, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26933936

RESUMO

The diversity of culturable, cold-active enzymes producing Bacilli was investigated from three sub-glacial lakes of north western Indian Himalayas. Amplified ribosomal DNA restriction analysis (ARDRA) using three restriction enzymes Alu I, Msp I, and Hae III led to the clustering of 136 Bacilli into 26, 23, and 22 clusters at 75% similarity index from Chandratal Lake, Dashair Lake, and Pangong Lake, respectively. Phylogenetic analysis based on 16S rRNA gene sequencing led to the identification of 35 Bacilli that could be grouped in seven families viz.: Bacillaceae (48%), Staphylococcaceae (14%), Bacillales incertae sedis (13%), Planococcaceae (12%), Paenibacillaceae (9%), Sporolactobacillaceae (3%), and Carnobacteriaceae (1%), which included twelve different genera Bacillus, Desemzia, Exiguobacterium, Jeotgalicoccus, Lysinibacillus, Paenibacillus, Planococcus, Pontibacillus, Sinobaca, Sporosarcina, Staphylococcus, and Virgibacillus. Based on their optimal temperature for growth, 35 Bacilli were grouped as psychrophilic (11 strains), psychrotrophic (17 strains), or psychrotolerant (7 strains), respectively. The representative isolates from each cluster were screened for cold-active enzyme activities. Amylase, ß-glucosidase, pectinase, and protease activities at 4 °C were detected in more than 80% of the strains while approximately 40, 31, 23, 14, 11, and 9% of strains possessed cellulase, xylanase, ß-galactosidase, laccase, chitinase, and lipase activity, respectively. Among 35 Bacilli, Bacillus amyloliquefaciens, Bacillus marisflavi, Exiguobacterium indicum, Paenibacillus terrae, Pontibacillus sp., Sporosarcina globispora, and Sporosarcina psychrophila were efficient producers of different cold-active enzymes. These cold-adapted Bacilli could play an important role in industrial and agricultural processes.


Assuntos
Bacillus/enzimologia , Bacillus/isolamento & purificação , Lagos/microbiologia , Bacillus/genética , Bactérias/genética , Biodiversidade , Temperatura Baixa , DNA Bacteriano/genética , DNA Ribossômico/genética , Ativação Enzimática , Estabilidade Enzimática , Hidrolases/genética , Hidrolases/metabolismo , Hidrólise , Índia , Família Multigênica , Filogenia , Reação em Cadeia da Polimerase/métodos , RNA Ribossômico 16S/genética , Microbiologia da Água
18.
J Basic Microbiol ; 56(1): 44-58, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26567901

RESUMO

The diversity of culturable Bacilli was investigated in six wheat cultivating agro-ecological zones of India viz: northern hills, north western plains, north eastern plains, central, peninsular, and southern hills. These agro-ecological regions are based on the climatic conditions such as pH, salinity, drought, and temperature. A total of 395 Bacilli were isolated by heat enrichment and different growth media. Amplified ribosomal DNA restriction analysis using three restriction enzymes AluI, MspI, and HaeIII led to the clustering of these isolates into 19-27 clusters in the different zones at >70% similarity index, adding up to 137 groups. Phylogenetic analysis based on 16S rRNA gene sequencing led to the identification of 55 distinct Bacilli that could be grouped in five families, Bacillaceae (68%), Paenibacillaceae (15%), Planococcaceae (8%), Staphylococcaceae (7%), and Bacillales incertae sedis (2%), which included eight genera namely Bacillus, Exiguobacterium, Lysinibacillus, Paenibacillus, Planococcus, Planomicrobium, Sporosarcina, and Staphylococcus. All 395 isolated Bacilli were screened for their plant growth promoting attributes, which included direct-plant growth promoting (solubilization of phosphorus, potassium, and zinc; production of phytohormones; 1-aminocyclopropane-1-carboxylate deaminase activity and nitrogen fixation), and indirect-plant growth promotion (antagonistic, production of lytic enzymes, siderophore, hydrogen cyanide, and ammonia). To our knowledge, this is the first report for the presence of Bacillus endophyticus, Paenibacillus xylanexedens, Planococcus citreus, Planomicrobium okeanokoites, Sporosarcina sp., and Staphylococcus succinus in wheat rhizosphere and exhibit multifunctional PGP attributes. These niche-specific and multifarious PGP Bacilli may serve as inoculants for crops growing in respective climatic conditions.


Assuntos
Bacillus/fisiologia , Triticum/microbiologia , Bacillus/química , Bacillus/genética , Bacillus/isolamento & purificação , Sequência de Bases , DNA Bacteriano/genética , DNA Ribossômico/genética , Ecologia , Variação Genética , Índia , Família Multigênica , Fixação de Nitrogênio , Filogenia , Desenvolvimento Vegetal , Reguladores de Crescimento de Plantas/metabolismo , Reação em Cadeia da Polimerase , RNA Ribossômico 16S/genética , Rizosfera , Sideróforos , Solo/química , Microbiologia do Solo , Triticum/crescimento & desenvolvimento , Triticum/metabolismo
19.
Indian J Exp Biol ; 54(2): 142-50, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26934782

RESUMO

The plant growth promoting psychrotrophic Bacilli were investigated from different sites in north western Indian Himalayas. A total of 247 morphotypes were obtained from different soil and water samples and were grouped into 43 clusters based on 16S rDNA-RFLP analysis with three restriction endonucleases. Sequencing of representative isolates has revealed that these 43 Bacilli belonged to different species of 11 genera viz., Desemzia, Exiguobacterium, Jeotgalicoccus, Lysinibacillus, Paenibacillus, Planococcus, Pontibacillus, Sinobaca, Sporosarcina, Staphylococcus and Virgibacillus. With an aim to develop microbial inoculants that can perform efficiently at low temperatures, all representative isolates were screened for different plant growth promoting traits at low temperatures (5-15 degrees C). Among the strains, variations were observed for production (%) of indole-3-acetic acid (20), ammonia (19), siderophores (11), gibberellic acid (4) and hydrogen cyanide (2); solubilisation (%) of zinc (14), phosphate (13) and potassium (7); 1-aminocyclopropane-1-carboxylate deaminase activity (6%) and biocontrol activity (4%) against Rhizoctonia solani and Macrophomina phaseolina. Among all the strains, Bacillus licheniformis, Bacillus muralis, Desemzia incerta, Paenibacillus tylopili and Sporosarcina globispora were found to be potent candidates to be developed as inoculants as they exhibited multiple PGP traits at low temperature.


Assuntos
Bacillus/fisiologia , Bioprospecção , Desenvolvimento Vegetal , Temperatura Baixa , Índia , Microbiologia do Solo , Microbiologia da Água
20.
J Lipid Res ; 55(6): 1019-32, 2014 06.
Artigo em Inglês | MEDLINE | ID: mdl-24646949

RESUMO

We developed a common feature pharmacophore model using known antiadipogenic compounds (CFPMA). We identified rohitukine, a reported chromone anticancer alkaloid as a potential hit through in silico mapping of the in-house natural product library on CFPMA. Studies were designed to assess the antiadipogenic potential of rohitukine. Rohitukine was isolated from Dysoxylum binacteriferum Hook. to ⬧95% purity. As predicted by CFPMA, rohitukine was indeed found to be an antiadipogenic molecule. Rohitukine inhibited lipid accumulation and adipogenic differentiation in a concentration- and exposure-time-dependent manner in 3T3-L1 and C3H10T1/2 cells. Rohitukine downregulated expression of PPARγ, CCAAT/enhancer binding protein α, adipocyte protein 2 (aP2), FAS, and glucose transporter 4. It also suppressed mRNA expression of LPL, sterol-regulatory element binding protein (SREBP) 1c, FAS, and aP2, the downstream targets of PPARγ. Rohitukine arrests cells in S phase during mitotic clonal expansion. Rohitukine was bioavailable, and 25.7% of orally administered compound reached systemic circulation. We evaluated the effect of rohitukine on dyslipidemia induced by high-fat diet in the hamster model. Rohitukine increased hepatic expression of liver X receptor α and decreased expression of SREBP-2 and associated targets. Rohitukine decreased hepatic and gonadal lipid accumulation and ameliorated dyslipidemia significantly. In summary, our strategy to identify a novel antiadipogenic molecule using CFPMA successfully resulted in identification of rohitukine, which confirmed antiadipogenic activity and also exhibited in vivo antidyslipidemic activity.


Assuntos
Adipogenia/efeitos dos fármacos , Cromonas/farmacologia , Dislipidemias/tratamento farmacológico , Mitose/efeitos dos fármacos , Piperidinas/farmacologia , Pontos de Checagem da Fase S do Ciclo Celular/efeitos dos fármacos , Células 3T3-L1 , Animais , Cromonas/química , Dislipidemias/metabolismo , Dislipidemias/patologia , Feminino , Masculino , Mesocricetus , Camundongos , Piperidinas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA