Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 208
Filtrar
1.
Int J Mol Sci ; 25(17)2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39273102

RESUMO

Embryonic stem cells are crucial for studying developmental biology due to their self-renewal and pluripotency capabilities. This research investigates the differentiation of mouse ESCs into adipocytes, offering insights into obesity and metabolic disorders. Using a monolayer differentiation approach over 30 days, lipid accumulation and adipogenic markers, such as Cebpb, Pparg, and Fabp4, confirmed successful differentiation. RNA sequencing revealed extensive transcriptional changes, with over 15,000 differentially expressed genes linked to transcription regulation, cell cycle, and DNA repair. This study utilized Robust Rank Aggregation to identify critical regulatory genes like PPARG, CEBPA, and EP300. Network analysis further highlighted Atf5, Ccnd1, and Nr4a1 as potential key players in adipogenesis and its mature state, validated through RT-PCR. While key adipogenic factors showed plateaued expression levels, suggesting early differentiation events, this study underscores the value of ESCs in modeling adipogenesis. These findings contribute to our understanding of adipocyte differentiation and have significant implications for therapeutic strategies targeting metabolic diseases.


Assuntos
Adipócitos , Adipogenia , Diferenciação Celular , Células-Tronco Embrionárias Murinas , Animais , Adipogenia/genética , Camundongos , Células-Tronco Embrionárias Murinas/metabolismo , Células-Tronco Embrionárias Murinas/citologia , Diferenciação Celular/genética , Adipócitos/metabolismo , Adipócitos/citologia , PPAR gama/metabolismo , PPAR gama/genética , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Proteínas Estimuladoras de Ligação a CCAAT/genética , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Transcrição Gênica , Regulação da Expressão Gênica
2.
Int J Mol Sci ; 22(14)2021 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-34299287

RESUMO

Organoids represent one of the most important advancements in the field of stem cells during the past decade. They are three-dimensional in vitro culturing models that originate from self-organizing stem cells and can mimic the in vivo structural and functional specificities of body organs. Organoids have been established from multiple adult tissues as well as pluripotent stem cells and have recently become a powerful tool for studying development and diseases in vitro, drug screening, and host-microbe interaction. The use of stem cells-that have self-renewal capacity to proliferate and differentiate into specialized cell types-for organoids culturing represents a major advancement in biomedical research. Indeed, this new technology has a great potential to be used in a multitude of fields, including cancer research, hereditary and infectious diseases. Nevertheless, organoid culturing is still rife with many challenges, not limited to being costly and time consuming, having variable rates of efficiency in generation and maintenance, genetic stability, and clinical applications. In this review, we aim to provide a synopsis of pluripotent stem cell-derived organoids and their use for disease modeling and other clinical applications.


Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Técnicas de Cultura de Órgãos/métodos , Organoides/citologia , Células-Tronco Pluripotentes/citologia , Animais , Humanos , Modelos Biológicos , Organoides/efeitos dos fármacos , Organoides/metabolismo , Células-Tronco Pluripotentes/efeitos dos fármacos , Células-Tronco Pluripotentes/metabolismo
3.
Adv Exp Med Biol ; 1189: 267-312, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31758538

RESUMO

T cells play a pivotal role in orchestrating immune responses directed against a foreign (allogeneic) graft. For T cells to become fully activated, the T-cell receptor (TCR) must interact with the major histocompatibility complex (MHC) plus peptide complex on antigen-presenting cells (APCs), followed by a second "positive" costimulatory signal. In the absence of this second signal, T cells become anergic or undergo deletion. By blocking positive costimulatory signaling, T-cell allo-responses can be aborted, thus preventing graft rejection and promoting long-term allograft survival and possibly tolerance (Alegre ML, Najafian N, Curr Mol Med 6:843-857, 2006; Li XC, Rothstein DM, Sayegh MH, Immunol Rev 229:271-293, 2009). In addition, costimulatory molecules can provide negative "coinhibitory" signals that inhibit T-cell activation and terminate immune responses; strategies to promote these pathways can also lead to graft tolerance (Boenisch O, Sayegh MH, Najafian N, Curr Opin Organ Transplant 13:373-378, 2008). However, T-cell costimulation involves an incredibly complex array of interactions that may act simultaneously or at different times in the immune response and whose relative importance varies depending on the different T-cell subsets and activation status. In transplantation, the presence of foreign alloantigen incites not only destructive T effector cells but also protective regulatory T cells, the balance of which ultimately determines the fate of the allograft (Lechler RI, Garden OA, Turka LA, Nat Rev Immunol 3:147-158, 2003). Since the processes of alloantigen-specific rejection and regulation both require activation of T cells, costimulatory interactions may have opposing or synergistic roles depending on the cell being targeted. Such complexities present both challenges and opportunities in targeting T-cell costimulatory pathways for therapeutic purposes. In this chapter, we summarize our current knowledge of the various costimulatory pathways in transplantation and review the current state and challenges of harnessing these pathways to promote graft tolerance (summarized in Table 10.1).


Assuntos
Ativação Linfocitária , Receptores de Antígenos de Linfócitos T/metabolismo , Linfócitos T/citologia , Tolerância ao Transplante , Rejeição de Enxerto , Humanos , Transplante Homólogo
4.
Am J Pathol ; 187(6): 1368-1379, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28427861

RESUMO

Costimulatory molecules, such as the programmed death ligand (PD-L1), might exert differential effects on T-cell function, depending on the clinical setting and/or immunological environment. Given the impact of T cells on bronchiolitis obliterans (BO) in lung transplantation, we used an established tracheal transplant model inducing BO-like lesions to investigate the impact of PD-L1 on alloimmune responses and histopathological outcome in BO. In contrast to other transplant models in which PD-L1 generally shows protective functions, we demonstrated that PD-L1 has divergent effects depending on its location in donor versus recipient tissue. Although PD-L1 deficiency in donor tissue worsened histopathological outcome, and increased systemic inflammatory response, recipient PD-L1 deficiency induced opposite effects. Mechanistic studies revealed PD-L1-deficient recipients were hyporesponsive toward alloantigen, despite increased numbers of CD8+ effector T cells. The function of PD-L1 on T cells after unspecific stimulation was dependent on both cell type and strength of stimulation. This novel function of recipient PD-L1 may result from the high degree of T-cell activation within the highly immunogenic milieu of the transplanted tissue. In this model, both decreased T-cell alloimmune responses and the reduction of BO in PD-L1-deficient recipients suggest a potential therapeutic role of selectively blocking PD-L1 in the recipient. Further investigation is warranted to determine the impact of this finding embedded in the complex pathophysiological context of BO.


Assuntos
Antígeno B7-H1/imunologia , Bronquiolite Obliterante/imunologia , Traqueia/transplante , Imunologia de Transplantes , Animais , Antígeno B7-H1/deficiência , Bronquiolite Obliterante/patologia , Bronquiolite Obliterante/prevenção & controle , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Modelos Animais de Doenças , Células Epiteliais/imunologia , Sobrevivência de Enxerto/imunologia , Tolerância Imunológica/imunologia , Imunidade Celular , Isoantígenos/imunologia , Ativação Linfocitária/imunologia , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Doadores de Tecidos , Traqueia/patologia , Regulação para Cima/imunologia
5.
J Immunol ; 191(12): 5785-91, 2013 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-24319282

RESUMO

Calcineurin inhibitors (CNIs) revolutionized the field of organ transplantation and remain the standard of care 40 years after the discovery of cyclosporine. The early impressive results of cyclosporine in kidney transplant recipients led to its subsequent use in other organ transplant recipients and for treatment of a variety of autoimmune diseases as well. In this review, we examine the discovery of CNIs, their mechanism of action, preclinical and clinical studies with CNIs, and the usage of CNIs in nontransplant recipients. We review the mechanisms of renal toxicity associated with CNIs and the recent efforts to avoid or reduce usage of these drugs. Although minimization strategies are possible, safe, and of potential long-term benefit, complete avoidance of CNIs has proven to be more challenging than initially thought.


Assuntos
Inibidores de Calcineurina , Ciclosporina/história , Imunossupressores/história , Animais , Doenças Autoimunes/tratamento farmacológico , Calcineurina/fisiologia , Ensaios Clínicos como Assunto , Ciclosporina/efeitos adversos , Ciclosporina/química , Ciclosporina/farmacologia , Ciclosporina/uso terapêutico , Diabetes Mellitus Tipo 2/induzido quimicamente , Avaliação Pré-Clínica de Medicamentos , Quimioterapia Combinada , Previsões , Rejeição de Enxerto/prevenção & controle , História do Século XX , História do Século XXI , Humanos , Imunossupressores/efeitos adversos , Imunossupressores/química , Imunossupressores/farmacologia , Imunossupressores/uso terapêutico , Nefropatias/induzido quimicamente , Nefropatias/tratamento farmacológico , Nefropatias/imunologia , Transplante de Rim/história , Ativação Linfocitária/efeitos dos fármacos , Metanálise como Assunto , Estudos Multicêntricos como Assunto , Ensaios Clínicos Controlados Aleatórios como Assunto , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Tacrolimo/efeitos adversos , Tacrolimo/química , Tacrolimo/história , Tacrolimo/farmacologia , Tacrolimo/uso terapêutico
6.
Semin Immunol ; 23(4): 293-303, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21616680

RESUMO

Secondary, so-called costimulatory, signals are critically required for the process of T cell activation. Since landmark studies defined that T cells receiving a T cell receptor signal without a costimulatory signal, are tolerized in vitro, the investigation of T cell costimulation has attracted intense interest. Early studies demonstrated that interrupting T cell costimulation allows attenuation of the alloresponse, which is particularly difficult to modulate due to the clone size of alloreactive T cells. The understanding of costimulation has since evolved substantially and now encompasses not only positive signals involved in T cell activation but also negative signals inhibiting T cell activation and promoting T cell tolerance. Costimulation blockade has been used effectively for the induction of tolerance in rodent models of transplantation, but turned out to be less potent in large animals and humans. In this overview we will discuss the evolution of the concept of T cell costimulation, the potential of 'classical' and newly identified costimulation pathways as therapeutic targets for organ transplantation as well as progress towards clinical application of the first costimulation blocking compound.


Assuntos
Antígenos CD/imunologia , Sobrevivência de Enxerto/imunologia , Transplante de Órgãos , Receptores de Antígenos de Linfócitos T/imunologia , Linfócitos T/imunologia , Animais , Modelos Animais de Doenças , Humanos , Ativação Linfocitária , Camundongos , Terapia de Alvo Molecular , Receptor Cross-Talk/imunologia , Transdução de Sinais/imunologia , Tolerância ao Transplante
7.
J Am Soc Nephrol ; 25(7): 1415-29, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24676639

RESUMO

Podocyte injury and resulting albuminuria are hallmarks of diabetic nephropathy, but targeted therapies to halt or prevent these complications are currently not available. Here, we show that the immune-related molecule B7-1/CD80 is a critical mediator of podocyte injury in type 2 diabetic nephropathy. We report the induction of podocyte B7-1 in kidney biopsy specimens from patients with type 2 diabetes. Genetic and epidemiologic studies revealed the association of two single nucleotide polymorphisms at the B7-1 gene with diabetic nephropathy. Furthermore, increased levels of the soluble isoform of the B7-1 ligand CD28 correlated with the progression to ESRD in individuals with type 2 diabetes. In vitro, high glucose conditions prompted the phosphatidylinositol 3 kinase-dependent upregulation of B7-1 in podocytes, and the ectopic expression of B7-1 in podocytes increased apoptosis and induced disruption of the cytoskeleton that were reversed by the B7-1 inhibitor CTLA4-Ig. Podocyte expression of B7-1 was also induced in vivo in two murine models of diabetic nephropathy, and treatment with CTLA4-Ig prevented increased urinary albumin excretion and improved kidney pathology in these animals. Taken together, these results identify B7-1 inhibition as a potential therapeutic strategy for the prevention or treatment of diabetic nephropathy.


Assuntos
Antígeno B7-1/fisiologia , Diabetes Mellitus Tipo 1/complicações , Nefropatias Diabéticas/etiologia , Podócitos , Adulto , Idoso , Animais , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Regulação para Cima
8.
Circulation ; 127(4): 463-75, 2013 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-23250993

RESUMO

BACKGROUND: Heart transplantation is a lifesaving procedure for patients with end-stage heart failure. Despite much effort and advances in the field, current immunosuppressive regimens are still associated with poor long-term cardiac allograft outcomes, and with the development of complications, including infections and malignancies, as well. The development of a novel, short-term, and effective immunomodulatory protocol will thus be an important achievement. The purine ATP, released during cell damage/activation, is sensed by the ionotropic purinergic receptor P2X7 (P2X7R) on lymphocytes and regulates T-cell activation. Novel clinical-grade P2X7R inhibitors are available, rendering the targeting of P2X7R a potential therapy in cardiac transplantation. METHODS AND RESULTS: We analyzed P2X7R expression in patients and mice and P2X7R targeting in murine recipients in the context of cardiac transplantation. Our data demonstrate that P2X7R is specifically upregulated in graft-infiltrating lymphocytes in cardiac-transplanted humans and mice. Short-term P2X7R targeting with periodate-oxidized ATP promotes long-term cardiac transplant survival in 80% of murine recipients of a fully mismatched allograft. Long-term survival of cardiac transplants was associated with reduced T-cell activation, T-helper cell 1/T-helper cell 17 differentiation, and inhibition of STAT3 phosphorylation in T cells, thus leading to a reduced transplant infiltrate and coronaropathy. In vitro genetic upregulation of the P2X7R pathway was also shown to stimulate T-helper cell 1/T-helper cell 17 cell generation. Finally, P2X7R targeting halted the progression of coronaropathy in a murine model of chronic rejection as well. CONCLUSIONS: P2X7R targeting is a novel clinically relevant strategy to prolong cardiac transplant survival.


Assuntos
Trifosfato de Adenosina/análogos & derivados , Rejeição de Enxerto/tratamento farmacológico , Rejeição de Enxerto/mortalidade , Transplante de Coração/mortalidade , Antagonistas do Receptor Purinérgico P2X/farmacologia , Receptores Purinérgicos P2X7/metabolismo , Trifosfato de Adenosina/farmacologia , Adulto , Animais , Doença Crônica , Modelos Animais de Doenças , Feminino , Rejeição de Enxerto/imunologia , Transplante de Coração/imunologia , Humanos , Imunocompetência/efeitos dos fármacos , Imunocompetência/imunologia , Isoantígenos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Receptores Purinérgicos P2X7/genética , Receptores Purinérgicos P2X7/imunologia , Fator de Transcrição STAT3/metabolismo , Sobreviventes/estatística & dados numéricos , Células Th1/efeitos dos fármacos , Células Th1/imunologia , Células Th17/efeitos dos fármacos , Células Th17/imunologia
9.
Nat Med ; 13(8): 952-61, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17660828

RESUMO

Cardiac fibrosis, associated with a decreased extent of microvasculature and with disruption of normal myocardial structures, results from excessive deposition of extracellular matrix, which is mediated by the recruitment of fibroblasts. The source of these fibroblasts is unclear and specific anti-fibrotic therapies are not currently available. Here we show that cardiac fibrosis is associated with the emergence of fibroblasts originating from endothelial cells, suggesting an endothelial-mesenchymal transition (EndMT) similar to events that occur during formation of the atrioventricular cushion in the embryonic heart. Transforming growth factor-beta1 (TGF-beta1) induced endothelial cells to undergo EndMT, whereas bone morphogenic protein 7 (BMP-7) preserved the endothelial phenotype. The systemic administration of recombinant human BMP-7 (rhBMP-7) significantly inhibited EndMT and the progression of cardiac fibrosis in mouse models of pressure overload and chronic allograft rejection. Our findings show that EndMT contributes to the progression of cardiac fibrosis and that rhBMP-7 can be used to inhibit EndMT and to intervene in the progression of chronic heart disease associated with fibrosis.


Assuntos
Diferenciação Celular , Fibrose Endomiocárdica/patologia , Células Endoteliais/patologia , Mesoderma/patologia , Animais , Células da Medula Óssea/patologia , Proteína Morfogenética Óssea 7 , Proteínas Morfogenéticas Ósseas/farmacologia , Proteínas Morfogenéticas Ósseas/uso terapêutico , Linhagem Celular , Células Cultivadas , Doença Crônica , Fibrose Endomiocárdica/tratamento farmacológico , Células Endoteliais/efeitos dos fármacos , Humanos , Células-Tronco Mesenquimais/patologia , Mesoderma/efeitos dos fármacos , Camundongos , Camundongos Transgênicos , Fator de Crescimento Transformador beta/farmacologia , Fator de Crescimento Transformador beta/uso terapêutico , Fator de Crescimento Transformador beta1/farmacologia
10.
Nature ; 451(7176): 345-9, 2008 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-18202660

RESUMO

Tumour-initiating cells capable of self-renewal and differentiation, which are responsible for tumour growth, have been identified in human haematological malignancies and solid cancers. If such minority populations are associated with tumour progression in human patients, specific targeting of tumour-initiating cells could be a strategy to eradicate cancers currently resistant to systemic therapy. Here we identify a subpopulation enriched for human malignant-melanoma-initiating cells (MMIC) defined by expression of the chemoresistance mediator ABCB5 (refs 7, 8) and show that specific targeting of this tumorigenic minority population inhibits tumour growth. ABCB5+ tumour cells detected in human melanoma patients show a primitive molecular phenotype and correlate with clinical melanoma progression. In serial human-to-mouse xenotransplantation experiments, ABCB5+ melanoma cells possess greater tumorigenic capacity than ABCB5- bulk populations and re-establish clinical tumour heterogeneity. In vivo genetic lineage tracking demonstrates a specific capacity of ABCB5+ subpopulations for self-renewal and differentiation, because ABCB5+ cancer cells generate both ABCB5+ and ABCB5- progeny, whereas ABCB5- tumour populations give rise, at lower rates, exclusively to ABCB5- cells. In an initial proof-of-principle analysis, designed to test the hypothesis that MMIC are also required for growth of established tumours, systemic administration of a monoclonal antibody directed at ABCB5, shown to be capable of inducing antibody-dependent cell-mediated cytotoxicity in ABCB5+ MMIC, exerted tumour-inhibitory effects. Identification of tumour-initiating cells with enhanced abundance in more advanced disease but susceptibility to specific targeting through a defining chemoresistance determinant has important implications for cancer therapy.


Assuntos
Linhagem da Célula , Melanoma/patologia , Células-Tronco Neoplásicas/patologia , Subfamília B de Transportador de Cassetes de Ligação de ATP , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Animais , Divisão Celular , Linhagem Celular Tumoral , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Humanos , Melanoma/genética , Melanoma/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos NOD , Camundongos Nus , Camundongos SCID , Transplante de Neoplasias , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/transplante , Análise Serial de Tecidos , Transplante Heterólogo
11.
PLoS One ; 19(9): e0306457, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39269963

RESUMO

In this study, we conducted a case-control investigation to assess the immunogenicity and effectiveness of primary and first booster homologous and heterologous COVID-19 vaccination regimens against infection and hospitalization, targeting variants circulating in Lebanon during 2021-2022. The study population comprised active Lebanese military personnel between February 2021 and September 2022. Vaccine effectiveness (VE) against laboratory-confirmed SARS-CoV-2 infection and associated hospitalization was retrospectively determined during different variant-predominant periods using a case-control study design. Vaccines developed by Sinopharm, Pfizer, and AstraZeneca as well as Sputnik V were analyzed. Prospective assessment of humoral immune response, which was measured based on the SARS-CoV-2 antispike receptor binding domain IgG titer, was performed post vaccination at various time points, focusing on Sinopharm and Pfizer vaccines. Statistical analyses were performed using IBM SPSS and GraphPad Prism. COVID-19 VE remained consistently high before the emergence of the Omicron variant, with lower estimates during the Delta wave than those during the Alpha wave for primary vaccination schemes. However, vaccines continued to offer significant protection against infection. VE estimates consistently decreased for the Omicron variant across post-vaccination timeframes and schemes. VE against hospitalization declined over time and was influenced by the variant. No breakthrough infections progressed to critical or fatal COVID-19. Immunogenicity analysis revealed that the homologous Pfizer regimen elicited a stronger humoral response than Sinopharm, while a heterologous Sinopharm/Pfizer regimen yielded comparable results to the Pfizer regimen. Over time, both Sinopharm's and Pfizer's primary vaccination schemes exhibited decreased humoral immunity titers, with Pfizer being a more effective booster than Sinopharm. This study, focusing on healthy young adults, provides insights into VE during different pandemic waves. Continuous research and monitoring are essential for understanding vaccine-mediated immune responses under evolving circumstances.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Hospitalização , Imunização Secundária , SARS-CoV-2 , Humanos , Líbano/epidemiologia , COVID-19/prevenção & controle , COVID-19/imunologia , COVID-19/epidemiologia , Vacinas contra COVID-19/imunologia , SARS-CoV-2/imunologia , Masculino , Hospitalização/estatística & dados numéricos , Adulto , Feminino , Estudos de Casos e Controles , Eficácia de Vacinas , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/sangue , Imunogenicidade da Vacina , Militares , Adulto Jovem , Estudos Retrospectivos , Vacinação , Imunidade Humoral
12.
Cells ; 13(17)2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39273075

RESUMO

Spinal cord injury (SCI) is a serious condition accompanied by severe adverse events that affect several aspects of the patient's life, such as motor, sensory, and functional impairment. Despite its severe consequences, definitive treatment for these injuries is still missing. Therefore, researchers have focused on developing treatment strategies aimed at ensuring full recovery post-SCI. Accordingly, attention has been drawn toward cellular therapy using mesenchymal stem cells. Considering their wide availability, decreased immunogenicity, wide expansion capacity, and impressive effectiveness in many therapeutic approaches, adipose-derived stem cell (ADSC) injections in SCI cases have been investigated and showed promising results. In this review, SCI pathophysiology and ADSC transplantation benefits are discussed independently, together with SCI animal models and adipose stem cell preparation and application techniques. The mechanisms of healing in an SCI post-ADSC injection, the outcomes of this therapeutic approach, and current clinical trials are also deliberated, in addition to the challenges and future perspectives, aiming to encourage further research in this field.


Assuntos
Tecido Adiposo , Traumatismos da Medula Espinal , Transplante de Células-Tronco , Traumatismos da Medula Espinal/terapia , Humanos , Animais , Tecido Adiposo/citologia , Transplante de Células-Tronco/métodos , Células-Tronco/citologia , Terapia Baseada em Transplante de Células e Tecidos/métodos , Transplante de Células-Tronco Mesenquimais/métodos , Modelos Animais de Doenças
13.
J Exp Med ; 204(7): 1691-702, 2007 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-17606630

RESUMO

It has been suggested that T cell immunoglobulin mucin (Tim)-1 expressed on T cells serves to positively costimulate T cell responses. However, crosslinking of Tim-1 by its ligand Tim-4 resulted in either activation or inhibition of T cell responses, thus raising the issue of whether Tim-1 can have a dual function as a costimulator. To resolve this issue, we tested a series of monoclonal antibodies specific for Tim-1 and identified two antibodies that showed opposite functional effects. One anti-Tim-1 antibody increased the frequency of antigen-specific T cells, the production of the proinflammatory cytokines IFN-gamma and IL-17, and the severity of experimental autoimmune encephalomyelitis. In contrast, another anti-Tim-1 antibody inhibited the generation of antigen-specific T cells, production of IFN-gamma and IL-17, and development of autoimmunity, and it caused a strong Th2 response. Both antibodies bound to closely related epitopes in the IgV domain of the Tim-1 molecule, but the activating antibody had an avidity for Tim-1 that was 17 times higher than the inhibitory antibody. Although both anti-Tim-1 antibodies induced CD3 capping, only the activating antibody caused strong cytoskeletal reorganization and motility. These data indicate that Tim-1 regulates T cell responses and that Tim-1 engagement can alter T cell function depending on the affinity/avidity with which it is engaged.


Assuntos
Proteínas de Membrana/imunologia , Linfócitos T/imunologia , Animais , Anticorpos/farmacologia , Autoimunidade , Complexo CD3/imunologia , Linfócitos T CD4-Positivos/imunologia , Modelos Animais de Doenças , Encefalomielite/imunologia , Receptor Celular 1 do Vírus da Hepatite A , Tolerância Imunológica , Interferon gama/imunologia , Interleucina-17/imunologia , Ativação Linfocitária , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos , Proteínas Recombinantes/imunologia , Células Th2/imunologia , Transfecção
14.
J Clin Immunol ; 33 Suppl 1: S43-9, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22941509

RESUMO

Tregitopes are regulatory T cell epitopes derived from immunoglobulin G (IgG) that stimulate CD25(+) FoxP3(+) T cells to expand. In conjunction with these Tregs, Tregitopes can prevent, treat, and even cure autoimmune disease in mouse models, suppress allo-specific responses in murine transplant models, inhibit CD8(+) T cell responses to recombinant adeno-associated virus (AAV) gene transfer vectors, and induce adaptive Tregs in DO11.10 mice. In this review of recent Tregitope studies, we summarize their effects in vitro and describe recent comparisons between intravenous IgG (IVIG) and Tregitopes in standard in vivo immune tolerance models. Further investigations of the mechanism of action of Tregitopes in the preclinical models described here will lead to clinical trials where Tregitopes may have the potential to alter the treatment of autoimmune disease, transplantation, and allergy, and to improve the efficiency of gene and protein replacement therapies.


Assuntos
Epitopos de Linfócito T/imunologia , Imunoglobulina G/imunologia , Linfócitos T Reguladores/imunologia , Animais , Doenças Autoimunes/imunologia , Doenças Autoimunes/terapia , Autoimunidade , Humanos , Tolerância Imunológica , Imunoglobulinas Intravenosas/imunologia , Imunoglobulinas Intravenosas/uso terapêutico , Pesquisa/tendências
15.
Eur J Immunol ; 42(9): 2343-53, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22733595

RESUMO

Ligands of the B7 family provide both positive and negative costimulatory signals to the CD28 family of receptors on T lymphocytes, the balance of which determines the immune response. B7-H3 is a member of the B7 family whose function in T-cell activation has been the subject of some controversy: in autoimmunity and tumor immunity, it has been described as both costimulatory and coinhibitory, while in transplantation, B7-H3 signaling is thought to contribute to graft rejection. However, we now demonstrate results to the contrary. Signaling through a putative B7-H3 receptor prolonged allograft survival in a fully MHC-mismatched cardiac model and promoted a shift toward a Th2 milieu; conversely, B7-H3 blockade, achieved by use of a blocking antibody, resulted in accelerated rejection, an effect associated with enhanced IFN-γ production. Finally, graft prolongation achieved by CTLA4 Ig was shortened both by B7-H3 blockade and the absence of recipient B7-H3. These findings suggest a coinhibitory role for B7-H3. However, experience with other CD28/B7 family members suggests that immune redundancy plays a crucial role in determining the functions of various pathways. Given the abundance of conflicting data, it is plausible that, under differing conditions, B7-H3 may have both positive and negative costimulatory functions.


Assuntos
Antígenos B7/imunologia , Transplante de Coração/imunologia , Transdução de Sinais/imunologia , Células Th1/imunologia , Transplante Homólogo/imunologia , Abatacepte , Animais , Antígenos B7/metabolismo , Antígenos CD28/imunologia , Antígenos CD28/metabolismo , Rejeição de Enxerto/imunologia , Rejeição de Enxerto/metabolismo , Imunoconjugados/imunologia , Imunoconjugados/metabolismo , Interferon gama/imunologia , Interferon gama/metabolismo , Cinética , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos de Linfócitos T/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo , Células Th1/metabolismo , Células Th2/imunologia , Células Th2/metabolismo , Imunologia de Transplantes
16.
Blood ; 117(4): 1176-83, 2011 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-21076046

RESUMO

Clinical trials using mesenchymal stem cells (MSCs) have been initiated worldwide. An improved understanding of the mechanisms by which allogeneic MSCs evade host immune responses is paramount to regulating their survival after administration. This study has focused on the novel role of serine protease inhibitor (SPI) in the escape of MSCs from host immunosurveillance through the inhibition of granzyme B (GrB). Our data indicate bone marrow-derived murine MSCs express SPI6 constitutively. MSCs from mice deficient for SPI6 (SPI6(-/-)) exhibited a 4-fold higher death rate by primed allogeneic cytotoxic T cells than did wild-type MSCs. A GrB inhibitor rescued SPI6(-/-) MSCs from cytotoxic T-cell killing. Transduction of wild-type MSCs with MigR1-SPI6 also protected MSCs from cytotoxic T cell-mediated death in vitro. In addition, SPI6(-/-) MSCs displayed a shorter lifespan than wild-type MSCs when injected into an allogeneic host. We conclude that SPI6 protects MSCs from GrB-mediated killing and plays a pivotal role in their survival in vivo. Our data could serve as a basis for future SPI-based strategies to regulate the survival and function of MSCs after administration and to enhance the efficacy of MSC-based therapy for diseases.


Assuntos
Evasão da Resposta Imune/genética , Proteínas de Membrana/genética , Células-Tronco Mesenquimais/metabolismo , Serina Endopeptidases/genética , Serpinas/genética , Animais , Diferenciação Celular/genética , Células Cultivadas , Regulação da Expressão Gênica/fisiologia , Técnicas de Silenciamento de Genes , Granzimas/antagonistas & inibidores , Granzimas/metabolismo , Proteínas de Membrana/metabolismo , Células-Tronco Mesenquimais/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID , Serina Endopeptidases/metabolismo , Inibidores de Serina Proteinase/genética , Inibidores de Serina Proteinase/metabolismo , Serpinas/metabolismo
17.
J Immunol ; 187(9): 4530-41, 2011 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-21949023

RESUMO

Fetomaternal tolerance has been shown to depend both on regulatory T cells (Tregs) and negative signals from the PD1-PDL1 costimulatory pathway. More recently, IL-17-producing T cells (Th17) have been recognized as a barrier in inducing tolerance in transplantation. In this study, we investigate the mechanisms of PDL1-mediated regulation of fetomaternal tolerance using an alloantigen-specific CD4(+) TCR transgenic mouse model system (ABM-tg mouse). PDL1 blockade led to an increase in embryo resorption and a reduction in litter size. This was associated with a decrease in Tregs, leading to a lower Treg/effector T cell ratio. Moreover, PDL1 blockade inhibited Ag-specific alloreactive T cell apoptosis and induced apoptosis of Tregs and a shift toward higher frequency of Th17 cells, breaking fetomaternal tolerance. These Th17 cells arose predominantly from CD4(+)Foxp3(-) cells, rather than from conversion of Tregs. Locally in the placenta, similar decrease in regulatory and apoptotic markers was observed by real-time PCR. Neutralization of IL-17 abrogated the anti-PDL1 effect on fetal survival rate and restored Treg numbers. Finally, the adoptive transfer of Tregs was also able to improve fetal survival in the setting of PDL1 blockade. This is to our knowledge the first report using an alloantigen-specific model that establishes a link between PDL1, Th17 cells, and fetomaternal tolerance.


Assuntos
Antígeno B7-H1/fisiologia , Antígenos de Histocompatibilidade Classe II/fisiologia , Histocompatibilidade Materno-Fetal/imunologia , Tolerância Imunológica , Interleucina-17/fisiologia , Transdução de Sinais/imunologia , Células Th17/imunologia , Células Th17/metabolismo , Animais , Antígenos de Diferenciação/fisiologia , Antígeno B7-H1/antagonistas & inibidores , Feminino , Técnicas de Introdução de Genes , Antígenos de Histocompatibilidade Classe II/genética , Histocompatibilidade Materno-Fetal/genética , Tolerância Imunológica/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Gravidez , Receptor de Morte Celular Programada 1/fisiologia , Células Th1/imunologia , Células Th1/metabolismo , Células Th17/citologia , Células Th2/imunologia , Células Th2/metabolismo
18.
J Immunol ; 187(3): 1097-105, 2011 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-21697456

RESUMO

Programmed death-1 ligand 1 (PD-L1) is a coinhibitory molecule that negatively regulates multiple tolerance checkpoints. In the NOD mouse model, PD-L1 regulates the development of diabetes. PD-L1 has two binding partners, programmed death-1 and B7-1, but the significance of the PD-L1:B7-1 interaction in regulating self-reactive T cell responses is not yet clear. To investigate this issue in NOD mice, we have compared the effects of two anti-PD-L1 Abs that have different blocking activities. Anti-PD-L1 mAb 10F.2H11 sterically and functionally blocks only PD-L1:B7-1 interactions, whereas anti-PD-L1 mAb 10F.9G2 blocks both PD-L1:B7-1 and PD-L1:programmed death-1 interactions. Both Abs had potent, yet distinct effects in accelerating diabetes in NOD mice: the single-blocker 10F.2H11 mAb was more effective at precipitating diabetes in older (13-wk-old) than in younger (6- to 7-wk-old) mice, whereas the dual-blocker 10F.9G2 mAb rapidly induced diabetes in NOD mice of both ages. Similarly, 10F.2H11 accelerated diabetes in recipients of T cells from diabetic, but not prediabetic mice, whereas 10F.9G2 was effective in both settings. Both anti-PD-L1 mAbs precipitated diabetes in adoptive transfer models of CD4(+) and CD8(+) T cell-driven diabetes. Taken together, these data demonstrate that the PD-L1:B7-1 pathway inhibits potentially pathogenic self-reactive effector CD4(+) and CD8(+) T cell responses in vivo, and suggest that the immunoinhibitory functions of this pathway may be particularly important during the later phases of diabetogenesis.


Assuntos
Antígeno B7-1/fisiologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Diabetes Mellitus Tipo 1/imunologia , Diabetes Mellitus Tipo 1/prevenção & controle , Inibidores do Crescimento/fisiologia , Glicoproteínas de Membrana/fisiologia , Peptídeos/fisiologia , Transdução de Sinais/imunologia , Transferência Adotiva , Animais , Anticorpos Bloqueadores/administração & dosagem , Antígenos CD/fisiologia , Proteínas Reguladoras de Apoptose/fisiologia , Doenças Autoimunes/genética , Doenças Autoimunes/imunologia , Doenças Autoimunes/metabolismo , Antígeno B7-1/genética , Antígeno B7-1/imunologia , Antígeno B7-H1 , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD4-Positivos/transplante , Linfócitos T CD8-Positivos/metabolismo , Linfócitos T CD8-Positivos/transplante , Diabetes Mellitus Tipo 1/genética , Feminino , Ligantes , Glicoproteínas de Membrana/deficiência , Glicoproteínas de Membrana/imunologia , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Camundongos Transgênicos , Peptídeos/deficiência , Peptídeos/imunologia , Receptor de Morte Celular Programada 1 , Ligação Proteica/imunologia , Transdução de Sinais/genética
19.
J Immunol ; 187(5): 2252-60, 2011 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-21795594

RESUMO

Clinical trials using allogeneic mesenchymal stem cells (MSCs) are ongoing for the purpose of providing therapeutic benefit for a variety of human disorders. Pertinent to their clinical use are the accessibility to sufficient quantities of these cells allowing for repetitive administration, as well as a better understanding of the specific mechanisms by which allogeneic MSCs evade host immune responses that in turn influence their life span following administration. In this report, we sought to characterize and compare human peripheral blood MSCs (hPB-MSCs) with bone marrow-derived MSCs. hPB-MSCs met the established criteria to characterize this cellular lineage, including capacity for self-renewal, differentiation into tissues of mesodermal origin, and expression of phenotypic surface markers. In addition, hPB-MSCs suppressed alloreactive proliferation as well as the production of proinflammatory cytokines. Examination of the mechanisms by which allogeneic MSCs evade the host immune response, which is crucial for their therapeutic use, demonstrated that constitutive expression of serine protease inhibitor 9 (PI-9) on hPB-MSCs and bone marrow-derived MSCs is a major defense mechanism against granzyme B-mediated destruction by NK cells. Similarly, MSCs treated with small interfering RNA for PI-9 increased MSC cellular death, whereas expression of transgenic PI-9 following retroviral transduction protected MSCs. These data significantly advance our understanding of the immunomodulatory role for hPB-MSCs as well as the mechanisms by which they evade host immune responses. These findings contribute to the development of MSC-based therapies for diseases.


Assuntos
Citotoxicidade Imunológica/imunologia , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Serpinas/imunologia , Células da Medula Óssea/citologia , Transplante de Medula Óssea/imunologia , Transplante de Medula Óssea/métodos , Diferenciação Celular/imunologia , Proliferação de Células , Separação Celular , Citometria de Fluxo , Humanos , Células Matadoras Naturais/imunologia , Transplante de Células-Tronco de Sangue Periférico/métodos , Serpinas/metabolismo
20.
J Immunol ; 186(1): 121-31, 2011 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-21131428

RESUMO

Antagonism of CXCR4 disrupts the interaction between the CXCR4 receptor on hematopoietic stem cells (HSCs) and the CXCL12 expressed by stromal cells in the bone marrow, which subsequently results in the shedding of HSCs to the periphery. Because of their profound immunomodulatory effects, HSCs have emerged as a promising therapeutic strategy for autoimmune disorders. We sought to investigate the immunomodulatory role of mobilized autologous HSCs, via target of the CXCR4-CXL12 axis, to promote engraftment of islet cell transplantation. Islets from BALB/c mice were transplanted beneath the kidney capsule of hyperglycemic C57BL/6 mice, and treatment of recipients with CXCR4 antagonist resulted in mobilization of HSCs and in prolongation of islet graft survival. Addition of rapamycin to anti-CXCR4 therapy further promoted HSC mobilization and islet allograft survival, inducing a robust and transferable host hyporesponsiveness, while administration of an ACK2 (anti-CD117) mAb halted CXCR4 antagonist-mediated HSC release and restored allograft rejection. Mobilized HSCs were shown to express high levels of the negative costimulatory molecule programmed death ligand 1 (PD-L1), and HSCs extracted from wild-type mice, but not from PD-L1 knockout mice, suppressed the in vitro alloimmune response. Moreover, HSC mobilization in PD-L1 knockout mice failed to prolong islet allograft survival. Targeting the CXCR4-CXCL12 axis thus mobilizes autologous HSCs and promotes long-term survival of islet allografts via a PD-L1-mediated mechanism.


Assuntos
Antígeno B7-1/fisiologia , Quimiocina CXCL12/antagonistas & inibidores , Marcação de Genes , Sobrevivência de Enxerto/imunologia , Transplante de Células-Tronco Hematopoéticas , Transplante das Ilhotas Pancreáticas/imunologia , Glicoproteínas de Membrana/fisiologia , Peptídeos/fisiologia , Receptores CXCR4/antagonistas & inibidores , Animais , Antígeno B7-1/genética , Antígeno B7-H1 , Benzilaminas , Quimiocina CXCL12/metabolismo , Quimiotaxia de Leucócito/efeitos dos fármacos , Quimiotaxia de Leucócito/imunologia , Ciclamos , Diabetes Mellitus Experimental/imunologia , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Experimental/cirurgia , Marcação de Genes/métodos , Sobrevivência de Enxerto/efeitos dos fármacos , Sobrevivência de Enxerto/genética , Compostos Heterocíclicos/farmacologia , Transplante das Ilhotas Pancreáticas/patologia , Masculino , Glicoproteínas de Membrana/deficiência , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Camundongos Knockout , Peptídeos/deficiência , Peptídeos/genética , Receptores CXCR4/metabolismo , Transplante Homólogo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA