Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Angew Chem Int Ed Engl ; 61(39): e202207998, 2022 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-35929609

RESUMO

Understanding the complex behavior and dynamics of cellular membranes is integral to gain insight into cellular division and fusion processes. Bottom-up synthetic cells are as a platform for replicating and probing cellular behavior. Giant polymer vesicles are more robust than liposomal counterparts, as well as having a broad range of chemical functionalities. However, the stability of the membrane can prohibit dynamic processes such as membrane phase separation and division. Here, we present a method for manipulating the membrane of giant polymersomes using a temperature responsive polymer. Upon elevation of temperature deformation and phase separation of the membrane was observed. Upon cooling, the membrane relaxed and became homogeneous again, with infrequent division of the synthetic cells.


Assuntos
Células Artificiais , Lipossomas Unilamelares , Transição de Fase , Polímeros , Temperatura
2.
Biomacromolecules ; 21(7): 2755-2763, 2020 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-32543851

RESUMO

Lignin-based nano- and microcarriers are a promising biodegradable drug delivery platform inside of plants. Many wood-decaying fungi are capable of degrading the wood component lignin by segregated lignases. These fungi are responsible for severe financial damage in agriculture, and many of these plant diseases cannot be treated today. However, enzymatic degradation is also an attractive handle to achieve a controlled release of drugs from artificial lignin vehicles. Herein, chemically cross-linked lignin nanocarriers (NCs) were prepared by aza-Michael addition in miniemulsion, followed by solvent evaporation. The cross-linking of lignin was achieved with the bio-based amines (spermine and spermidine). Several fungicides-namely, azoxystrobin, pyraclostrobin, tebuconazole, and boscalid-were encapsulated in situ during the miniemulsion polymerization, demonstrating the versatility of the method. Lignin NCs with diameters of 200-300 nm (determined by dynamic light scattering) were obtained, with high encapsulation efficiencies (70-99%, depending on the drug solubility). Lignin NCs successfully inhibited the growth of Phaeomoniella chlamydospora and Phaeoacremonium minimum, which are lignase-producing fungi associated with the worldwide occurring fungal grapevine trunk disease Esca. In planta studies proved their efficiency for at least 4 years after a single injection into Vitis vinifera ("Portugieser") plants on a test vineyard in Germany. The lignin NCs are of high interest as biodegradable delivery vehicles to be applied by trunk injection against the devastating fungal disease Esca but might also be promising against other fungal plant diseases.


Assuntos
Fungicidas Industriais , Preparações Farmacêuticas , Ascomicetos , Lignina
3.
Bioprocess Biosyst Eng ; 43(7): 1279-1286, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32189054

RESUMO

In this work, the free lipase Eversa® Transform 2.0 was used as a catalyst for enzymatic glycerolysis reaction in a solvent-free system. The product was evaluated by nuclear magnetic resonance (1H NMR) and showed high conversion related to hydroxyl groups. In sequence, the product of the glycerolysis was used as stabilizer and biopolyol for the synthesis of poly(urea-urethane) nanoparticles (PUU NPs) aqueous dispersion by the miniemulsion polymerization technique, without the use of a further surfactant in the system. Reactions resulted in stable dispersions of PUU NPs with an average diameter of 190 nm. After, the formation of the PUU NPs in the presence of concentrated lipase Eversa® Transform 2.0 was studied, aiming the lipase immobilization on the NP surface, and a stable enzymatic derivative with diameters around 231 nm was obtained. The hydrolytic enzymatic activity was determined using ρ-nitrophenyl palmitate (ρ-NPP) and the immobilization was confirmed by morphological analysis using transmission electron microscopy and fluorescence microscopy.


Assuntos
Enzimas Imobilizadas/imunologia , Glicerol/química , Lipase/metabolismo , Polímeros/química , Poliuretanos/química , Microscopia Eletrônica de Transmissão , Sonicação , Espectroscopia de Infravermelho com Transformada de Fourier
4.
Bioprocess Biosyst Eng ; 42(10): 1625-1634, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31267175

RESUMO

In this work, a fed-batch approach was adopted to overcome propionic acid lipase inactivation effects in the benzyl propionate direct esterification mediated by lipases. The ester synthesis was performed using commercial immobilized (Novozym 435) and lyophilized form Candida antarctica fraction B lipase (Cal B) as biocatalysts of the esterification between benzyl alcohol and propionic acid in a solvent-free system. The reaction involved the propionic acid-controlled addition during the first 5 h ensuring an excess of alcohol to dilute the media. The biocatalyst Novozym 435 showed a good performance in the first cycle of the fed-batch esterification, ensuring 90 and 99% of conversion at substrates molar ratio of 1:1 and 1:5 (acid:alcohol), respectively. However, the enzyme lost the activity and the conversions were sharply reduced at the second cycle. A novel qualitative protein content analysis by optical microscopy showed that the lipase was desorbed from the support after the esterification, and this behavior was strongly related to the presence of propionic acid in the reaction medium. The lyophilized Cal B was also tested as biocatalyst of the benzyl propionate esterification and showed a similar performance (related to the Novozym 435) in ester conversion and initial reaction rates for all substrates molar ratios tested. Since the substrates affected the performance of the Novozym 435, the lyophilized Cal B is the most suitable catalyst to the benzyl propionate esterification with conversions above 90%, considering a the fed-batch approach in a solvent-free system.


Assuntos
Biocatálise , Enzimas Imobilizadas/química , Proteínas Fúngicas/química , Lipase/química , Propionatos/síntese química , Esterificação
5.
Bioprocess Biosyst Eng ; 42(2): 213-222, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30367249

RESUMO

The use of green sources for materials synthesis has gained popularity in recent years. This work investigated the immobilization of lipase NS-40116 (Thermomyces lanuginosus lipase) in polyurethane foam (PUF) using a biopolyol obtained through the enzymatic glycerolysis between castor oil and glycerol, catalyzed by the commercial lipase Novozym 435 for the PUF formation. The reaction was performed to obtain biopolyol resulting in the conversion of 64% in mono- and diacylglycerol, promoting the efficient use of the reaction product as biopolyol to obtain polyurethane foam. The enzymatic derivative with immobilized lipase NS-40116 presented apparent density of 0.19 ± 0.03 g/cm3 and an immobilization yield was 94 ± 4%. Free and immobilized lipase NS-40116 were characterized in different solvents (methanol, ethanol, and propanol), temperatures (20, 40, 60 and 80 °C), pH (3, 5, 7, 9 and 11) and presence of ions Na+, Mg++, and Ca++. The support provided higher stability to the enzyme, mainly when subjected to acid pH (free lipase lost 80% of relative activity after 360 h of contact, when the enzymatic derivative lost around 22%) and high-temperature free lipase lost 50% of relative activity, while the immobilized remained 95%. The enzymatic derivative was also used for esterification reactions and conversions around 66% in fatty acid methyl esters, using abdominal chicken fat as feedstock, were obtained in the first use, maintaining this high conversion until the fourth reuse, proving that the support obtained using environmentally friendly techniques is applicable.


Assuntos
Enzimas Imobilizadas/química , Glicerol/química , Química Verde/métodos , Lipase/química , Polímeros/química , Poliuretanos/síntese química , Biocatálise , Biotecnologia/métodos , Microbiologia Ambiental , Esterificação , Proteínas Fúngicas , Cinética , Poliuretanos/química , Solventes , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura
6.
Pharm Dev Technol ; 24(5): 593-599, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30457422

RESUMO

The current paucity of effective and affordable drugs for the treatment of leishmaniasis renders the search for new therapeutic alternatives a priority. Gallic acid-related compounds display anti-parasitic activities and their incorporation into drug carrier systems, such as polymeric nanoparticles may be a viable alternative for leishmaniasis treatment. Therefore, this study focused on the synthesis and characterization of octyl gallate (G8) loaded poly(methyl methacrylate) (PMMA) nanoparticles via miniemulsion polymerization in order to increase the leishmanicidal activity of this compound. G8 loaded PMMA nanoparticles presented a spherical morphology with a mean size of 108 nm, a negatively charged surface (-33 ± 5 mV) and high encapsulation efficiency (83% ± 5). Fourier-transform infrared spectroscopy and X-ray diffraction analysis confirmed that G8 was encapsulated in PMMA nanoparticles and presented a biphasic release profile. The G8 loaded PMMA nanoparticles did not present cytotoxic effect on human red blood cells. G8 loaded PMMA nanoparticles displayed a leishmanicidal activity almost three times higher than free G8 while the cytotoxic activity against human THP-1 cells remained unchanged.


Assuntos
Portadores de Fármacos/química , Ácido Gálico/análogos & derivados , Leishmania/efeitos dos fármacos , Polimetil Metacrilato/química , Tripanossomicidas/administração & dosagem , Tripanossomicidas/farmacologia , Células CACO-2 , Linhagem Celular , Liberação Controlada de Fármacos , Emulsões/química , Ácido Gálico/administração & dosagem , Ácido Gálico/química , Ácido Gálico/farmacologia , Hemólise/efeitos dos fármacos , Humanos , Leishmaniose/tratamento farmacológico , Nanopartículas/química , Nanopartículas/ultraestrutura , Tripanossomicidas/química
7.
Bioprocess Biosyst Eng ; 41(5): 585-591, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29350294

RESUMO

Benzyl propionate is an aromatic ester that possesses a fruity odor and is usually found in nature in the composition of some fruits such as plums and melons. This work aimed for the benzyl propionate synthesis by esterification using a new immobilized enzyme preparation with low-cost material from Candida antarctica (NS 88011) and three commercial immobilized lipases (Novozym 435, Lipozyme TL-IM and Lipozyme RM-IM). Novozym 435 had the best performance even when the solvent tert-butanol was absent of the reaction medium. Results from a 22 factorial design showed that an increase in the enzyme amount led to a higher conversion, even when the temperature was kept at the low value. Currently, no research had synthesized successfully benzyl propionate via esterification mediated by lipases; and we reached an ester conversion of ~ 44% after 24 h indicating that it is a promising route for benzyl propionate biotechnological production.


Assuntos
Candida/enzimologia , Enzimas Imobilizadas/química , Ésteres/síntese química , Proteínas Fúngicas/química , Lipase/química , Biocatálise , Ésteres/química
8.
An Acad Bras Cienc ; 89(1 Suppl 0): 745-755, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28492736

RESUMO

Enzymatically crossliked gelatin hydrogel was submitted to two different drying methods: air drying and freeze drying. The resulting polymeric tridimensional arrangement (compact or porous, respectively) led to different thermal and swelling properties. Significant differences (p < 0.05) on thermal and mechanical characteristics as well as swelling in non-enzymatic gastric and intestinal simulated fluids (37 ºC) were detected. Water absorption data in such media was modelled according to Higuchi, Korsmeyer-Peppas, and Peppas-Sahlin equations. Freeze dried hydrogel showed Fickian diffusion behavior while air dried hydrogels presented poor adjustment to Higuchi model suggesting the importance of the relaxation mechanism at the beginning of swelling process. It was possible to conclude that the same gelatin hydrogel may be suitable to different applications depending on the drying process used.


Assuntos
Liofilização , Gelatina/metabolismo , Hidrogéis/metabolismo , Água , Varredura Diferencial de Calorimetria , Gelatina/química , Gelatina/ultraestrutura , Hidrogéis/química , Fenômenos Mecânicos , Microscopia Eletrônica de Varredura , Fatores de Tempo
9.
Bioprocess Biosyst Eng ; 40(4): 511-518, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27942859

RESUMO

Immobilization of cellulases on magnetic nanoparticles, especially magnetite nanoparticles, has been the main approach studied to make this enzyme, economically and industrially, more attractive. However, magnetite nanoparticles tend to agglomerate, are very reactive and easily oxidized in air, which has strong impact on their useful life. Thus, it is very important to provide proper surface coating to avoid the mentioned problems. This study aimed to investigate the immobilization of cellulase on magnetic nanoparticles encapsulated in polymeric nanospheres. The support was characterized in terms of morphology, average diameter, magnetic behavior and thermal decomposition analyses. The polymer nanospheres containing encapsulated magnetic nanoparticles showed superparamagnetic behavior and intensity average diameter about 150 nm. Immobilized cellulase exhibited broader temperature stability than in the free form and great reusability capacity, 69% of the initial enzyme activity was maintained after eight cycles of use. The magnetic support showed potential for cellulase immobilization and allowed fast and easy biocatalyst recovery through a single magnet.


Assuntos
Celulase/química , Enzimas Imobilizadas/química , Campos Magnéticos , Nanopartículas/química , Polimetil Metacrilato/química
10.
J Mater Sci Mater Med ; 27(12): 185, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27787810

RESUMO

Lauryl gallate loaded in superparamagnetic poly(methyl methacrylate) nanoparticles surface modified with folic acid were synthesized by miniemulsion polymerization in just one step. In vitro biocompatibility and cytotoxicity assays on L929 (murine fibroblast), human red blood, and HeLa (uterine colon cancer) cells were performed. The effect of folic acid at the nanoparticles surface was evaluated through cellular uptake assays in HeLa cells. Results showed that the presence of folic acid did not affect substantially the polymer particle size (~120 nm), the superparamagnetic behavior, the encapsulation efficiency of lauryl gallate (~87 %), the Zeta potential (~38 mV) of the polymeric nanoparticles or the release profile of lauryl gallate. The release profile of lauryl gallate from superparamagnetic poly(methyl methacrylate) nanoparticles presented an initial burst effect (0-1 h) followed by a slow and sustained release, indicating a biphasic release system. Lauryl gallate loaded in superparamagnetic poly(methyl methacrylate) nanoparticles with folic acid did not present cytotoxicity effects on L929 and human red blood cells. However, free lauryl gallate presented significant cytotoxic effects on L929 and human red blood cells at all tested concentrations. The presence of folic acid increased the cytotoxicity of lauryl gallate loaded in nanoparticles on HeLa cells due to a higher cellular uptake when HeLa cells were incubated at 37 °C. On the other hand, when the nanoparticles were incubated at low temperature (4 °C) cellular uptake was not observed, suggesting that the uptake occurred by folate receptor mediated energy-dependent endocytosis. Based on presented results our work suggests that this carrier system can be an excellent alternative in targeted drug delivery by folate receptor.


Assuntos
Ácido Fólico/química , Ácido Gálico/análogos & derivados , Nanopartículas de Magnetita/química , Polimetil Metacrilato/química , Animais , Materiais Biocompatíveis , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Portadores de Fármacos/farmacologia , Endocitose , Eritrócitos/citologia , Ácido Gálico/farmacocinética , Células HeLa , Hemólise , Humanos , Cinética , Camundongos , Tamanho da Partícula , Espectroscopia de Infravermelho com Transformada de Fourier , Propriedades de Superfície , Temperatura , Termogravimetria
11.
J Mater Chem B ; 12(12): 3047-3062, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38421173

RESUMO

Many efforts have been devoted to bone tissue to regenerate damaged tissues, and the development of new biocompatible materials that match the biological, mechanical, and chemical features required for this application is crucial. Herein, a collagen-decorated scaffold was prepared via electrospinning using a synthesized unsaturated copolyester (poly(globalide-co-pentadecalactone)), followed by two coupling reactions: thiol-ene functionalization with cysteine and further conjugation via EDC/NHS chemistry with collagen, aiming to design a bone tissue regeneration device with improved hydrophilicity and cell viability. Comonomer ratios were varied, affecting the copolymer's thermal and chemical properties and highlighting the tunable features of this copolyester. Functionalization with cysteine created new carboxyl and amine groups needed for bioconjugation with collagen, which is responsible for providing biological and structural integrity to the extra-cellular matrix. Bioconjugation with collagen turned the scaffold highly hydrophilic, decreasing its contact angle from 107 ± 2° to 0°, decreasing the copolymer crystallinity by 71%, and improving cell viability by 85% compared with the raw scaffold, thus promoting cell growth and proliferation. The highly efficient and biosafe strategy to conjugate polymers and proteins created a promising device for bone repair in tissue engineering.


Assuntos
Cisteína , Alicerces Teciduais , Alicerces Teciduais/química , Colágeno/química , Osso e Ossos , Regeneração Óssea , Polímeros
12.
Pharmaceutics ; 15(3)2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36986860

RESUMO

Superparamagnetic iron oxide nanoparticles (SPIONs) have their use approved for the diagnosis/treatment of malignant tumors and can be metabolized by the organism. To prevent embolism caused by these nanoparticles, they need to be coated with biocompatible and non-cytotoxic materials. Here, we synthesized an unsaturated and biocompatible copolyester, poly (globalide-co-ε-caprolactone) (PGlCL), and modified it with the amino acid cysteine (Cys) via a thiol-ene reaction (PGlCLCys). The Cys-modified copolymer presented reduced crystallinity and increased hydrophilicity in comparison to PGlCL, thus being used for the coating of SPIONS (SPION@PGlCLCys). Additionally, cysteine pendant groups at the particle's surface allowed the direct conjugation of (bio)molecules that establish specific interactions with tumor cells (MDA-MB 231). The conjugation of either folic acid (FA) or the anti-cancer drug methotrexate (MTX) was carried out directly on the amine groups of cysteine molecules present in the SPION@PGlCLCys surface (SPION@PGlCLCys_FA and SPION@PGlCLCys_MTX) by carbodiimide-mediated coupling, leading to the formation of amide bonds, with conjugation efficiencies of 62% for FA and 60% for MTX. Then, the release of MTX from the nanoparticle surface was evaluated using a protease at 37 °C in phosphate buffer pH~5.3. It was found that 45% of MTX conjugated to the SPIONs were released after 72 h. Cell viability was measured by MTT assay, and after 72 h, 25% reduction in cell viability of tumor cells was observed. Thus, after a successful conjugation and subsequent triggered release of MTX, we understand that SPION@PGlCLCys has a strong potential to be treated as a model nanoplatform for the development of treatments and diagnosis techniques (or theranostic applications) that can be less aggressive to patients.

13.
J Control Release ; 361: 694-716, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37567507

RESUMO

Extracellular vesicles (EVs) are nanosized intercellular messengers that bear enormous application potential as biological drug delivery vehicles. Much progress has been made for loading or decorating EVs with proteins, peptides or RNAs using genetically engineered donor cells, but post-isolation loading with synthetic drugs and using EVs from natural sources remains challenging. In particular, quantitative and unambiguous data assessing whether and how small molecules associate with EVs versus other components in the samples are still lacking. Here we describe the systematic and quantitative characterisation of passive EV loading with small molecules based on hydrophobic interactions - either through direct adsorption of hydrophobic compounds, or by membrane anchoring of hydrophilic ligands via cholesterol tags. As revealed by single vesicle imaging, both ligand types bind to CD63 positive EVs (exosomes), however also non-specifically to other vesicles, particles, and serum proteins. The hydrophobic compounds Curcumin and Terbinafine aggregate on EVs with no apparent saturation up to 106-107 molecules per vesicle as quantified by liquid chromatography - high resolution mass spectrometry (LC-HRMS). For both compounds, high density EV loading resulted in the formation of a population of large, electron-dense vesicles as detected by quantitative cryo-transmission electron microscopy (TEM), a reduced EV cell uptake and a toxic gain of function for Curcumin-EVs. In contrast, cholesterol tagging of a hydrophilic mdm2-targeted cyclic peptide saturated at densities of ca 104-105 molecules per vesicle, with lipidomics showing addition to, rather than replacement of endogenous cholesterol. Cholesterol anchored ligands did not change the EVs' size or morphology, and such EVs retained their cell uptake activity without inducing cell toxicity. However, the cholesterol-anchored ligands were rapidly shed from the vesicles in presence of serum. Based on these data, we conclude that (1) both methods allow loading of EVs with small molecules but are prone to unspecific compound binding or redistribution to other components if present in the sample, (2) cholesterol anchoring needs substantial optimization of formulation stability for in vivo applications, whereas (3) careful titration of loading densities is warranted when relying on hydrophobic interactions of EVs with hydrophobic compounds to mitigate changes in physicochemical properties, loss of EV function and potential cell toxicity.


Assuntos
Curcumina , Vesículas Extracelulares , Ligantes , Vesículas Extracelulares/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Colesterol/metabolismo
14.
Food Res Int ; 173(Pt 1): 113295, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37803607

RESUMO

Researchers have concentrated efforts in the search for natural-based reversible inhibitors for cholinesterase enzymes as they may play a key role in the treatment of degenerative diseases. Diverse plant alkaloids can inhibit the action of acetylcholinesterase and, among them, berberine is a promising bioactive. However, berberine has poor water solubility and low bioavailability, which makes it difficult to use in treatment. The solid dispersion technique can improve the water affinity of hydrophobic substances, but berberine solid dispersions have not been extensively studied. Safety testing is also essential to ensure that the berberine-loaded solid dispersions are safe for use. This study investigated the effectiveness of berberine-loaded solid dispersions (SD) as inhibitors of acetylcholinesterase enzyme (AChE). Docking simulation was used to investigate the influence of berberine on AChE, and in vitro assays were conducted to confirm the enzymatic kinetics of AChE in the presence of berberine. Berberine SD also showed improved cytotoxic effects on tumoral cells when dispersed in aqueous media. In vivo assays using Allium cepa were implemented, and no cytotoxicity/genotoxicity was found for the berberine solid dispersion. These results suggest that berberine SD could be a significant step towards safe nanostructures for use in the treatment of neurodegenerative diseases.


Assuntos
Alcaloides , Berberina , Nanopartículas , Berberina/farmacologia , Berberina/química , Acetilcolinesterase , Água
15.
Adv Colloid Interface Sci ; 300: 102582, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34953375

RESUMO

Nanoparticles have emerged as promising drug delivery systems for the treatment of several diseases. Novel cancer therapies have exploited these particles as alternative adjuvant therapies to overcome the traditional limitations of radio and chemotherapy. Curcumin is a natural bioactive compound found in turmeric, that has been reported to show anticancer activity against several types of tumors. Despite some biological limitations regarding its absorption in the human body, curcumin encapsulation in poly(lactic-co-glycolic acid) (PLGA), a non-toxic, biodegradable and biocompatible polymer, represents an effective strategy to deliver a drug to a tumor site. Furthermore, PLGA nanoparticles can be engineered with targeting moieties to reach specific cancer cells, thus enhancing the antitumor effects of curcumin. We herein aim to bring an up-to-date summary of the recently developed strategies for curcumin delivery to different types of cancer cells through encapsulation in PLGA nanoparticles, correlating their effects with those of curcumin on the biological capabilities acquired by cancer cells (cancer hallmarks). We discuss the targeting strategies proposed for advanced curcumin delivery and the respective improvements achieved for each cancer cell analyzed, in addition to exploring the encapsulation techniques employed. The conjugation of correct encapsulation techniques with tumor-oriented targeting design can result in curcumin-loaded PLGA nanoparticles that can successfully integrate the elaborate network of development of alternative cancer treatments along with traditional ones. Finally, the current challenges and future demands to launch these nanoparticles in oncology are comprehensively examined.


Assuntos
Curcumina , Nanopartículas , Neoplasias , Curcumina/farmacologia , Portadores de Fármacos , Sistemas de Liberação de Medicamentos , Humanos , Neoplasias/tratamento farmacológico , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Polímeros
16.
Adv Colloid Interface Sci ; 303: 102645, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35358807

RESUMO

Devastating plant diseases and soil depletion rationalize an extensive use of agrochemicals to secure the food production worldwide. The sustained release of fertilizers and pesticides in agriculture is a promising solution to the eco-toxicological impacts and it might reduce the amount and increase the effectiveness of agrochemicals administration in the field. This review article focusses on carriers with diameters below 1 µm, such as capsules, spheres, tubes and micelles that promote the sustained release of actives. Biopolymer nanocarriers represent a potentially environmentally friendly alternative due to their renewable origin and biodegradability, which prevents the formation of microplastics. The social aspects, economic potential, and success of commercialization of biopolymer based nanocarriers are influenced by the controversial nature of nanotechnology and depend on the use case. Nanotechnology's enormous innovative power is only able to unfold its potential to limit the effects of climate change and to counteract current environmental developments if the perceived risks are understood and mitigated.


Assuntos
Agroquímicos , Plásticos , Agroquímicos/farmacologia , Biopolímeros , Preparações de Ação Retardada , Horticultura , Ciências Sociais
17.
J Biomed Mater Res B Appl Biomater ; 110(3): 702-711, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34619018

RESUMO

Poly(thioether-ester) (PTEe) nanoparticles obtained by thiol-ene polymerization have received attention of many researchers due to several advantages, including, biocompatibility and biodegradability. The search for new nanomaterials requires toxicity studies to assess potential toxic effects of their administration. Therefore, the aim of this study was to evaluate the in vivo acute toxicity of PTEe and poly(thioether-ester)-coated magnetic nanoparticles prepared by thiol-ene polymerization in miniemulsion. These nanoparticles presented a mean size of approximately 120 nm, spherical morphology, and negative surface charge. Doses of 40 mg/kg were administered intraperitoneally to Swiss mice and nociceptive, behavioral and biochemical parameters were investigated in five different organs. None of the nanoparticles led to any alterations in the nociceptive and behavioral responses. Biochemical alterations were observed in liver, decreasing the sulfhydryl and glutathione (GSH) levels, suggesting the dependence of the GSH metabolism in the elimination of the nanoparticles. In general, both nanoparticle types did not cause disturbances in biochemical parameters analyzed in others organs. These results suggest that both nanoparticle types did not induce acute toxicity to the different organs evaluated, reinforcing the biocompatibility of PTEe nanoparticles synthetized by thiol-ene polymerization.


Assuntos
Nanopartículas , Sulfetos , Animais , Ésteres , Nanopartículas Magnéticas de Óxido de Ferro , Camundongos , Nanopartículas/toxicidade , Polimerização , Compostos de Sulfidrila , Sulfetos/toxicidade
18.
Eur J Pharmacol ; 923: 174934, 2022 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-35367420

RESUMO

Leishmaniasis is a neglected tropical disease that has a wide spectrum of clinical manifestations, ranging from visceral to cutaneous, with millions of new cases and thousands of deaths notified every year. The severity of the disease and its various clinical forms are determined by the species of the causative agent, Leishmania, as well as the host's immune response. Major challenges still exist in the diagnosis and treatment of leishmaniasis, and there is no vaccine available to prevent this disease in humans. Nanotechnology has emerged as a promising tool in a variety of fields. In this review, we highlight the main and most recent advances in nanomedicine to improve the diagnosis and treatment, as well as for the development of vaccines, for leishmaniasis. Nanomaterials are nanometric in size and can be produced by a variety of materials, including lipids, polymers, ceramics, and metals, with varying structures and morphologies. Nanotechnology can be used as biosensors to detect antibodies or antigens, thus improving the sensitivity and specificity of such immunological and molecular diagnostic tests. While in treatment, nanomaterials can act as drug carriers or, be used directly, to reduce any toxic effects of drug compounds to the host and to be more selective towards the parasite. Furthermore, preclinical studies show that different nanomaterials can carry different Leishmania antigens, or even act as adjuvants to improve a Th1 immune response in an attempt to produce an effective vaccine.


Assuntos
Leishmania , Leishmaniose , Vacinas , Portadores de Fármacos , Humanos , Leishmaniose/diagnóstico , Leishmaniose/tratamento farmacológico , Leishmaniose/prevenção & controle , Nanomedicina , Nanotecnologia , Vacinas/farmacologia
19.
Drug Metab Dispos ; 39(2): 199-207, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21045200

RESUMO

Fingolimod [(FTY720), Gilenya; 2-amino-2-[2-(4-octylphenyl)ethyl]-1,3-propanediol], a new drug for the treatment of relapsing multiple sclerosis, acts through its phosphate metabolite, which modulates sphingosine 1-phosphate receptors. This represents a novel mechanism of action. In the present work, the absorption and disposition of (14)C-labeled fingolimod were investigated in healthy male volunteers after a single oral dose of 4.5 mg. Total radioactivity was determined in blood, urine, and feces. Fingolimod was quantified in blood. Metabolite profiles were determined in blood and excreta, and metabolite structures were elucidated by mass spectrometry, wet-chemical methods, and comparison with reference compounds. Fingolimod was absorbed slowly but almost completely. The biotransformation of fingolimod involved three main pathways: 1) reversible phosphorylation to fingolimod phosphate [(S)-enantiomer, active principle]; 2) ω-hydroxylation at the octyl chain, catalyzed predominantly by CYP4F enzymes, followed by further oxidation to a carboxylic acid and subsequent ß-oxidation; and 3) formation of ceramide analogs by conjugation with endogenous fatty acids. This metabolism is quite unusual because it follows metabolic pathways of structurally related endogenous compounds rather than biotransformations typical for xenobiotics. The elimination of fingolimod was slow and occurred predominantly by oxidative metabolism whereas fingolimod phosphate was eliminated mainly by dephosphorylation back to fingolimod. Drug-related material was excreted mostly in the urine in the form of oxidation products.


Assuntos
Propilenoglicóis/farmacocinética , Receptores de Lisoesfingolipídeo/metabolismo , Esfingosina/análogos & derivados , Xenobióticos/farmacocinética , Absorção , Administração Oral , Adulto , Biotransformação , Radioisótopos de Carbono , Cromatografia Líquida de Alta Pressão , Fezes/química , Cloridrato de Fingolimode , Humanos , Masculino , Pessoa de Meia-Idade , Estrutura Molecular , Oxirredução , Propilenoglicóis/efeitos adversos , Propilenoglicóis/sangue , Propilenoglicóis/farmacologia , Propilenoglicóis/urina , Esfingosina/efeitos adversos , Esfingosina/sangue , Esfingosina/farmacocinética , Esfingosina/farmacologia , Esfingosina/urina , Espectrometria de Massas em Tandem , Fatores de Tempo , Distribuição Tecidual , Xenobióticos/sangue
20.
J Colloid Interface Sci ; 601: 678-688, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34091315

RESUMO

The current spraying of agrochemicals is unselective and ineffective, consuming a high amount of fungicides, which endangers the environment and human health. Cellulose-based nanocarriers (NCs) are a promising tool in sustainable agriculture and suitable vehicles for stimuli-responsive release of agrochemicals to target cellulase-segregating fungi, which cause severe plant diseases such as Apple Canker. Herein, cellulose was modified with undec-10-enoic acid to a hydrophobic and cross-linkable derivative, from which NCs were prepared via thiol-ene addition in miniemulsion. During the crosslinking reaction, the NCs were loaded in situ with hydrophobic fungicides, Captan and Pyraclostrobin. NCs with average sizes ranging from 200 to 300 nm and an agrochemical-load of 20 wt% were obtained. Cellulose-degrading fungi, e.g. Neonectria. ditissima which is responsible for Apple Canker, lead to the release of fungicides from the aqueous NC dispersions suppressing fungal growth. In contrast, the non-cellulase segregating fungi, e.g. Cylindrocladium buxicola, do not degrade the agrochemical-loaded NCs. This selective action against Apple Canker fungi, N. ditissima, proves the efficacy of NC-mediated drug delivery triggered by degradation in the exclusive presence of cellulolytic fungi. Cellulose NCs represent a sustainable alternative to the current unselective spraying of agrochemicals that treats many crop diseases ineffectively.


Assuntos
Agroquímicos , Hypocreales , Celulose , Humanos , Doenças das Plantas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA