Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Gels ; 10(6)2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38920908

RESUMO

Hyaluronic acid (HA) hydrogels are commonly used for facial dermal filling and for alternative medical aesthetic purposes. High diversity exists in commercial formulations, notably for the optimization of finished product stability, functionality, and performance. Polyvalent ingredients such as calcium hydroxylapatite (CaHA) or vitamin B3 (niacinamide) are notably used as bio-stimulants to improve skin quality attributes at the administration site. The aim of the present study was to perform multi-parametric characterization of two novel cross-linked dermal filler formulas (HAR-1 "Instant Refine" and HAR-3 "Maxi Lift") for elucidation of the various functional impacts of vitamin B3 incorporation. Therefore, the HAR products were firstly comparatively characterized in terms of in vitro rheology, cohesivity, injectability, and resistance to chemical or enzymatic degradation (exposition to H2O2, AAPH, hyaluronidases, or xanthine oxidase). Then, the HAR products were assessed for cytocompatibility and in vitro bio-stimulation attributes in a primary dermal fibroblast model. The results showed enhanced resilience of the cohesive HAR hydrogels as compared to JUVÉDERM® VOLBELLA® and VOLUMA® reference products in a controlled degradation assay panel. Furthermore, significant induction of total collagen synthesis in primary dermal fibroblast cultures was recorded for HAR-1 and HAR-3, denoting intrinsic bio-stimulatory effects comparable or superior to those of the Radiesse® and Sculptra™ reference products. Original results of high translational relevance were generated herein using robust and orthogonal experimental methodologies (hydrogel degradation, functional benchmarking) and study designs. Overall, the reported results confirmed the dual functionalization role of vitamin B3 in cross-linked HA dermal fillers, with a significant enhancement of hydrogel system stability attributes and the deployment of potent bio-stimulatory capacities.

2.
Antioxidants (Basel) ; 13(4)2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38671873

RESUMO

Niacinamide (or nicotinamide) is a small-molecule hydrosoluble vitamin with essential metabolic functions in mammalian cells. Niacinamide has become a key functional ingredient in diverse skincare products and cosmetics. This vitamin plays a pivotal role in NAD+ synthesis, notably contributing to redox reactions and energy production in cutaneous cells. Via diversified biochemical mechanisms, niacinamide is also known to influence human DNA repair and cellular stress responses. Based on decades of safe use in cosmetics, niacinamide recently gained widespread popularity as an active ingredient which aligns with the "Kligman standards" in skincare. From a therapeutic standpoint, the intrinsic properties of niacinamide may be applied to managing acne vulgaris, melasma, and psoriasis. From a cosmeceutical standpoint, niacinamide has been widely leveraged as a multipurpose antiaging ingredient. Therein, it was shown to significantly reduce cutaneous oxidative stress, inflammation, and pigmentation. Overall, through multimodal mechanisms, niacinamide may be considered to partially prevent and/or reverse several biophysical changes associated with skin aging. The present narrative review provides multifactorial insights into the mechanisms of niacinamide's therapeutic and cosmeceutical functions. The ingredient's evolving role in skincare was critically appraised, with a strong focus on the biochemical mechanisms at play. Finally, novel indications and potential applications of niacinamide in dermal fillers and alternative injectable formulations were prospectively explored.

3.
BioTech (Basel) ; 12(1)2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36810442

RESUMO

Cryopreservation and lyophilization processes are widely used for conservation purposes in the pharmaceutical, biotechnological, and food industries or in medical transplantation. Such processes deal with extremely low temperatures (e.g., -196 °C) and multiple physical states of water, a universal and essential molecule for many biological lifeforms. This study firstly considers the controlled laboratory/industrial artificial conditions used to favor specific water phase transitions during cellular material cryopreservation and lyophilization under the Swiss progenitor cell transplantation program. Both biotechnological tools are successfully used for the long-term storage of biological samples and products, with reversible quasi-arrest of metabolic activities (e.g., cryogenic storage in liquid nitrogen). Secondly, similarities are outlined between such artificial localized environment modifications and some natural ecological niches known to favor metabolic rate modifications (e.g., cryptobiosis) in biological organisms. Specifically, examples of survival to extreme physical parameters by small multi-cellular animals (e.g., tardigrades) are discussed, opening further considerations about the possibility to reversibly slow or temporarily arrest the metabolic activity rates of defined complex organisms in controlled conditions. Key examples of biological organism adaptation capabilities to extreme environmental parameters finally enabled a discussion about the emergence of early primordial biological lifeforms, from natural biotechnology and evolutionary points of view. Overall, the provided examples/similarities confirm the interest in further transposing natural processes and phenomena to controlled laboratory settings with the ultimate goal of gaining better control and modulation capacities over the metabolic activities of complex biological organisms.

4.
Bioengineering (Basel) ; 10(4)2023 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-37106596

RESUMO

Platelet-rich plasma (PRP) preparations have recently become widely available in sports medicine, facilitating their use in regenerative therapy for ligament and tendon affections. Quality-oriented regulatory constraints for PRP manufacturing and available clinical experiences have underlined the critical importance of process-based standardization, a pre-requisite for sound and homogeneous clinical efficacy evaluation. This retrospective study (2013-2020) considered the standardized GMP manufacturing and sports medicine-related clinical use of autologous PRP for tendinopathies at the Lausanne University Hospital (Lausanne, Switzerland). This study included 48 patients (18-86 years of age, with a mean age of 43.4 years, and various physical activity levels), and the related PRP manufacturing records indicated a platelet concentration factor most frequently in the range of 2.0-2.5. The clinical follow-up showed that 61% of the patients reported favorable efficacy outcomes (full return to activity, with pain disappearance) following a single ultrasound-guided autologous PRP injection, whereas 36% of the patients required two PRP injections. No significant relationship was found between platelet concentration factor values in PRP preparations and clinical efficacy endpoints of the intervention. The results were in line with published reports on tendinopathy management in sports medicine, wherein the efficacy of low-concentration orthobiologic interventions appears to be unrelated to sport activity levels or to patient age and gender. Overall, this study confirmed the effectiveness of standardized autologous PRP preparations for tendinopathies in sports medicine. The results were discussed in light of the critical importance of protocol standardization for both PRP manufacturing and clinical administration to reduce biological material variability (platelet concentrations) and to enhance the robustness of clinical interventions (comparability of efficacy/patient improvement).

5.
Pharmaceutics ; 15(9)2023 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-37765300

RESUMO

Autologous cell therapy manufacturing timeframes constitute bottlenecks in clinical management pathways of severe burn patients. While effective temporary wound coverings exist for high-TBSA burns, any means to shorten the time-to-treatment with cytotherapeutic skin grafts could provide substantial therapeutic benefits. This study aimed to establish proofs-of-concept for a novel combinational cytotherapeutic construct (autologous/allogeneic DE-FE002-SK2 full dermo-epidermal graft) designed for significant cutaneous cell therapy manufacturing timeframe rationalization. Process development was based on several decades (four for autologous protocols, three for allogeneic protocols) of in-house clinical experience in cutaneous cytotherapies. Clinical grade dermal progenitor fibroblasts (standardized FE002-SK2 cell source) were used as off-the-freezer substrates in novel autologous/allogeneic dermo-epidermal bilayer sheets. Under vitamin C stimulation, FE002-SK2 primary progenitor fibroblasts rapidly produced robust allogeneic dermal templates, allowing patient keratinocyte attachment in co-culture. Notably, FE002-SK2 primary progenitor fibroblasts significantly outperformed patient fibroblasts for collagen deposition. An ex vivo de-epidermalized dermis model was used to demonstrate the efficient DE-FE002-SK2 construct bio-adhesion properties. Importantly, the presented DE-FE002-SK2 manufacturing process decreased clinical lot production timeframes from 6-8 weeks (standard autologous combined cytotherapies) to 2-3 weeks. Overall, these findings bear the potential to significantly optimize burn patient clinical pathways (for rapid wound closure and enhanced tissue healing quality) by combining extensively clinically proven cutaneous cell-based technologies.

6.
Pharmaceutics ; 15(1)2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36678813

RESUMO

Allogeneic dermal progenitor fibroblasts constitute cytotherapeutic contenders for modern cutaneous regenerative medicine. Based on advancements in the relevant scientific, technical, and regulatory fields, translational developments have slowly yet steadily led to the clinical application of such biologicals and derivatives. To set the appropriate general context, the first aim of this study was to provide a current global overview of approved cell and gene therapy products, with an emphasis on cytotherapies for cutaneous application. Notable advances were shown for North America, Europe, Iran, Japan, and Korea. Then, the second and main aim of this study was to perform a retrospective analysis on the various applications of dermal progenitor fibroblasts and derivatives, as clinically used under the Swiss progenitor cell transplantation program for the past three decades. Therein, the focus was set on the extent and versatility of use of the therapies under consideration, their safety parameters, as well as formulation options for topical application. Quantitative and illustrative data were summarized and reported for over 300 patients treated with various cell-based or cell-derived preparations (e.g., progenitor biological bandages or semi-solid emulsions) in Lausanne since 1992. Overall, this study shows the strong current interest in biological-based approaches to cutaneous regenerative medicine from a global developmental perspective, as well as the consolidated local clinical experience gathered with a specific and safe allogeneic cytotherapeutic approach. Taken together, these current and historical elements may serve as tangible working bases for the further optimization of local and modern translational pathways for the provision of topical cytotherapeutic care.

7.
Pharmaceutics ; 15(7)2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37514060

RESUMO

Hand tendon/ligament structural ruptures (tears, lacerations) often require surgical reconstruction and grafting, for the restauration of finger mechanical functions. Clinical-grade human primary progenitor tenocytes (FE002 cryopreserved progenitor cell source) have been previously proposed for diversified therapeutic uses within allogeneic tissue engineering and regenerative medicine applications. The aim of this study was to establish bioengineering and surgical proofs-of-concept for an artificial graft (Neoligaments Infinity-Lock 3 device) bearing cultured and viable FE002 primary progenitor tenocytes. Technical optimization and in vitro validation work showed that the combined preparations could be rapidly obtained (dynamic cell seeding of 105 cells/cm of scaffold, 7 days of co-culture). The studied standardized transplants presented homogeneous cellular colonization in vitro (cellular alignment/coating along the scaffold fibers) and other critical functional attributes (tendon extracellular matrix component such as collagen I and aggrecan synthesis/deposition along the scaffold fibers). Notably, major safety- and functionality-related parameters/attributes of the FE002 cells/finished combination products were compiled and set forth (telomerase activity, adhesion and biological coating potentials). A two-part human cadaveric study enabled to establish clinical protocols for hand ligament cell-assisted surgery (ligamento-suspension plasty after trapeziectomy, thumb metacarpo-phalangeal ulnar collateral ligamentoplasty). Importantly, the aggregated experimental results clearly confirmed that functional and clinically usable allogeneic cell-scaffold combination products could be rapidly and robustly prepared for bio-enhanced hand ligament reconstruction. Major advantages of the considered bioengineered graft were discussed in light of existing clinical protocols based on autologous tenocyte transplantation. Overall, this study established proofs-of-concept for the translational development of a functional tissue engineering protocol in allogeneic musculoskeletal regenerative medicine, in view of a pilot clinical trial.

8.
Pharmaceutics ; 15(5)2023 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-37242774

RESUMO

Thermo-responsive hyaluronan-based hydrogels and FE002 human primary chondroprogenitor cell sources have both been previously proposed as modern therapeutic options for the management of osteoarthritis (OA). For the translational development of a potential orthopedic combination product based on both technologies, respective technical aspects required further optimization phases (e.g., hydrogel synthesis upscaling and sterilization, FE002 cytotherapeutic material stabilization). The first aim of the present study was to perform multi-step in vitro characterization of several combination product formulas throughout the established and the optimized manufacturing workflows, with a strong focus set on critical functional parameters. The second aim of the present study was to assess the applicability and the efficacy of the considered combination product prototypes in a rodent model of knee OA. Specific characterization results (i.e., spectral analysis, rheology, tribology, injectability, degradation assays, in vitro biocompatibility) of hyaluronan-based hydrogels modified with sulfo-dibenzocyclooctyne-PEG4-amine linkers and poly(N-isopropylacrylamide) (HA-L-PNIPAM) containing lyophilized FE002 human chondroprogenitors confirmed the suitability of the considered combination product components. Specifically, significantly enhanced resistance toward oxidative and enzymatic degradation was shown in vitro for the studied injectable combination product prototypes. Furthermore, extensive multi-parametric (i.e., tomography, histology, scoring) in vivo investigation of the effects of FE002 cell-laden HA-L-PNIPAM hydrogels in a rodent model revealed no general or local iatrogenic adverse effects, whereas it did reveal some beneficial trends against the development of knee OA. Overall, the present study addressed key aspects of the preclinical development process for novel biologically-based orthopedic combination products and shall serve as a robust methodological basis for further translational investigation and clinical work.

9.
Antioxidants (Basel) ; 12(1)2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36671025

RESUMO

Cultured primary progenitor tenocytes in lyophilized form were previously shown to possess intrinsic antioxidant properties and hyaluronan-based hydrogel viscosity-modulating effects in vitro. The aim of this study was to prepare and functionally characterize several stabilized (lyophilized) cell-free progenitor tenocyte extracts for inclusion in cytotherapy-inspired complex injectable preparations. Fractionation and sterilization methods were included in specific biotechnological manufacturing workflows of such extracts. Comparative and functional-oriented characterizations of the various extracts were performed using several orthogonal descriptive, colorimetric, rheological, mechanical, and proteomic readouts. Specifically, an optimal sugar-based (saccharose/dextran) excipient formula was retained to produce sterilizable cytotherapeutic derivatives with appropriate functions. It was shown that extracts containing soluble cell-derived fractions possessed conserved and significant antioxidant properties (TEAC) compared to the freshly harvested cellular starting materials. Progenitor tenocyte extracts submitted to sub-micron filtration (0.22 µm) and 60Co gamma irradiation terminal sterilization (5−50 kGy) were shown to retain significant antioxidant properties and hyaluronan-based hydrogel viscosity modulating effects. Hydrogel combination products displayed important efficacy-related characteristics (friction modulation, tendon bioadhesivity) with significant (p < 0.05) protective effects of the cellular extracts in oxidative environments. Overall, the present study sets forth robust control methodologies (antioxidant assays, H2O2-challenged rheological setups) for stabilized cell-free progenitor tenocyte extracts. Importantly, it was shown that highly sensitive phases of cytotherapeutic derivative manufacturing process development (purification, terminal sterilization) allowed for the conservation of critical biological extract attributes.

10.
Gels ; 9(10)2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37888381

RESUMO

While many injectable viscosupplementation products are available for osteoarthritis (OA) management, multiple hydrogel functional attributes may be further optimized for efficacy enhancement. The objective of this study was to functionally benchmark four commercially available hyaluronan-based viscosupplements (Ostenil, Ostenil Plus, Synvisc, and Innoryos), focusing on critical (rheological, lubricative, adhesive, and stability) attributes. Therefore, in vitro and ex vivo quantitative characterization panels (oscillatory rheology, rotational tribology, and texture analysis with bovine cartilage) were used for hydrogel product functional benchmarking, using equine synovial fluid as a biological control. Specifically, the retained experimental methodology enabled the authors to robustly assess and discuss various functional enhancement options for hyaluronan-based hydrogels (chemical cross-linking and addition of antioxidant stabilizing agents). The results showed that the Innoryos product, a niacinamide-augmented linear hyaluronan-based hydrogel, presented the best overall functional behavior in the retained experimental settings (high adhesivity and lubricity and substantial resistance to oxidative degradation). The Ostenil product was conversely shown to present less desirable functional properties for viscosupplementation compared to the other investigated products. Generally, this study confirmed the high importance of formulation development and control methodology optimization, aiming for the enhancement of novel OA-targeting product critical functional attributes and the probability of their clinical success. Overall, this work confirmed the tangible need for a comprehensive approach to hyaluronan-based viscosupplementation product functional benchmarking (product development and product selection by orthopedists) to maximize the chances of effective clinical OA management.

11.
Pharmaceutics ; 15(9)2023 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-37765301

RESUMO

Cytotherapies are often necessary for the management of symptomatic large knee (osteo)-chondral defects. While autologous chondrocyte implantation (ACI) has been clinically used for 30 years, allogeneic cells (clinical-grade FE002 primary chondroprogenitors) have been investigated in translational settings (Swiss progenitor cell transplantation program). The aim of this study was to comparatively assess autologous and allogeneic approaches (quality, safety, functional attributes) to cell-based knee chondrotherapies developed for clinical use. Protocol benchmarking from a manufacturing process and control viewpoint enabled us to highlight the respective advantages and risks. Safety data (telomerase and soft agarose colony formation assays, high passage cell senescence) and risk analyses were reported for the allogeneic FE002 cellular active substance in preparation for an autologous to allogeneic clinical protocol transposition. Validation results on autologous bioengineered grafts (autologous chondrocyte-bearing Chondro-Gide scaffolds) confirmed significant chondrogenic induction (COL2 and ACAN upregulation, extracellular matrix synthesis) after 2 weeks of co-culture. Allogeneic grafts (bearing FE002 primary chondroprogenitors) displayed comparable endpoint quality and functionality attributes. Parameters of translational relevance (transport medium, finished product suturability) were validated for the allogeneic protocol. Notably, the process-based benchmarking of both approaches highlighted the key advantages of allogeneic FE002 cell-bearing grafts (reduced cellular variability, enhanced process standardization, rationalized logistical and clinical pathways). Overall, this study built on our robust knowledge and local experience with ACI (long-term safety and efficacy), setting an appropriate standard for further clinical investigations into allogeneic progenitor cell-based orthopedic protocols.

12.
Bioconjug Chem ; 23(11): 2278-90, 2012 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-23116053

RESUMO

Bone substitute materials allowing trans-scaffold migration and in-scaffold survival of human bone-derived cells are mandatory for development of cell-engineered permanent implants to repair bone defects. In this study, we evaluated the influence on human bone-derived cells of the material composition and microstructure of foam scaffolds of calcium aluminate. The scaffolds were prepared using a direct foaming method allowing wide-range tailoring of the microstructure for pore size and pore openings. Human fetal osteoblasts (osteo-progenitors) attached to the scaffolds, migrated across the entire bioceramic depending on the scaffold pore size, colonized, and survived in the porous material for at least 6 weeks. The long-term biocompatibility of the scaffold material for human bone-derived cells was evidenced by in-scaffold determination of cell metabolic activity using a modified MTT assay, a repeated WST-1 assay, and scanning electron microscopy. Finally, we demonstrated that the osteo-progenitors can be covalently bound to the scaffolds using biocompatible click chemistry, thus enhancing the rapid adhesion of the cells to the scaffolds. Therefore, the different microstructures of the foams influenced the migratory potential of the cells, but not cell viability. Scaffolds allow covalent biocompatible chemical binding of the cells to the materials, either localized or widespread integration of the scaffolds for cell-engineered implants.


Assuntos
Substitutos Ósseos/química , Cerâmica/química , Feto/citologia , Osteoblastos/química , Alicerces Teciduais/química , Compostos de Alumínio/química , Substitutos Ósseos/síntese química , Compostos de Cálcio/química , Adesão Celular , Proliferação de Células , Células Cultivadas , Química Click , Humanos , Estrutura Molecular , Osteoblastos/citologia , Osteoblastos/metabolismo , Porosidade , Propriedades de Superfície
13.
JPEN J Parenter Enteral Nutr ; 46(4): 782-788, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34288001

RESUMO

BACKGROUND: Burnpatients characteristically have increased energy, glucose, and protein requirements. Glutamine supplementation is strongly recommended during early-phase treatment and is associated with improved immunity, wound healing, and reduced mortality. This study evaluated if early burn exudative losses might contribute to higher supplementation needs. METHODS: Patients admitted to the burn intensive care unit (ICU) had exudate collection from tight bandages applied to arms or legs during the first week (exudate aliquot twice daily). Seven amino acids (alanine, arginine, cystEine, glutamine, leucine, lysine, and methionine) were quantified by liquid chromatography-mass spectrometry. Descriptive analysis of all results is provided as median and interquartile range or in value ranges. RESULTS: Eleven patients aged 19-77 years, presenting with burns on 18%-70% of the body surface, with a median simplified acute physiology score II of 33 (range, 16-56) were included during the study period. The highest amino acid losses were observed during the first 3 days with an important interpatient and intrapatient variability. Glutamine and alanine losses were highest, followed by leucine and lysine in all patients; amino acid exudate concentrations were in the range of normal plasma concentrations and were stable over time. Total glutamine losses were correlated to the burned surface (r2 = 0.552, P = .012), but not to enteral glutamine supplements. CONCLUSIONS: The study shows significant exudative losses during early-stage burn recovery and particularly for glutamine and alanine. Glutamine loss generally decreased with wound closure, the subsequent decline of exudation, and the evolving size of burn surfaces.


Assuntos
Glutamina , Lisina , Alanina , Arginina , Humanos , Leucina
14.
Cells ; 11(6)2022 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-35326468

RESUMO

Cultured autologous human articular chondrocyte (HAC) implantation has been extensively investigated for safe and effective promotion of structural and functional restoration of knee cartilage lesions. HAC-based cytotherapeutic products for clinical use must be manufactured under an appropriate quality assurance system and follow good manufacturing practices (GMP). A prospective clinical trial is ongoing in the Lausanne University Hospital, where the HAC manufacturing processes have been implemented internally. Following laboratory development and in-house GMP transposition of HAC cell therapy manufacturing, a total of 47 patients have been treated to date. The main aim of the present study was to retrospectively analyze the available manufacturing records of the produced HAC-based cytotherapeutic products, outlining the inter-individual variability existing among the 47 patients regarding standardized transplant product preparation. These data were used to ameliorate and to ensure the continued high quality of cytotherapeutic care in view of further clinical investigations, based on the synthetic analyses of existing GMP records. Therefore, a renewed risk analysis-based process definition was performed, with specific focus set on process parameters, controls, targets, and acceptance criteria. Overall, high importance of the interdisciplinary collaboration and of the manufacturing process robustness was underlined, considering the high variability (i.e., quantitative, functional) existing between the treated patients and between the derived primary HAC cell types.


Assuntos
Condrócitos , Hospitais , Humanos , Estudos Prospectivos , Estudos Retrospectivos , Suíça
15.
Bioconjug Chem ; 22(7): 1422-32, 2011 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-21668008

RESUMO

The chemical functionalization of cell-surface proteins of human primary fetal bone cells with hydrophilic bioorthogonal intermediates was investigated. Toward this goal, chemical pathways were developed for click reaction-mediated coupling of alkyne derivatives with cellular azido-expressing proteins. The incorporation via a tetraethylene glycol linker of a dipeptide and a reporter biotin allowed the proof of concept for the introduction of cell-specific peptide ligands and allowed us to follow the reaction in living cells. Tuning the conditions of the click reaction resulted in chemical functionalization of living human fetal osteoblasts with excellent cell survival.


Assuntos
Alcinos/química , Química Click , Proteínas de Membrana/química , Osteoblastos/citologia , Membrana Celular/química , Sobrevivência Celular , Células Cultivadas , Feto/citologia , Humanos , Interações Hidrofóbicas e Hidrofílicas , Osteoblastos/química , Engenharia Tecidual/métodos
16.
Methods Mol Biol ; 2286: 1-24, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32430595

RESUMO

Primary progenitor cell types adequately isolated from fetal tissue samples present considerable therapeutic potential for a wide range of applications within allogeneic musculoskeletal regenerative medicine. Progenitor cells are inherently differentiated and extremely stable in standard bioprocessing conditions and can be culture-expanded to establish extensive and robust cryopreserved cell banks. Stringent processing conditions and exhaustive traceability are prerequisites for establishing a cell source admissible for further cGMP biobanking and clinical-grade production lot manufacture. Transplantation programs are ideal platforms for the establishment of primary progenitor cell sources to be used for manufacture of cell therapies or cell-based products. Well-defined and regulated procurement and processing of fetal biopsies after voluntary pregnancy interruptions ensure traceability and safety of progeny materials and therapeutic products derived therefrom. We describe herein the workflows and specifications devised under the Swiss Fetal Progenitor Cell Transplantation Program in order to traceably isolate primary progenitor cell types in vitro and to constitute Parental Cell Banks fit for subsequent industrial-scale cGMP processing. When properly devised, derived, and maintained, such cell sources established after a single organ donation can furnish sufficient progeny materials for years of development in translational musculoskeletal regenerative medicine.


Assuntos
Tecnologia Biomédica/normas , Transplante de Células/métodos , Células-Tronco Embrionárias Humanas/citologia , Cultura Primária de Células/métodos , Medicina Regenerativa/métodos , Bancos de Espécimes Biológicos/normas , Tecnologia Biomédica/métodos , Transplante de Células/normas , Células Cultivadas , Humanos , Guias de Prática Clínica como Assunto , Cultura Primária de Células/normas , Medicina Regenerativa/normas , Coleta de Tecidos e Órgãos/métodos , Coleta de Tecidos e Órgãos/normas , Obtenção de Tecidos e Órgãos/normas
17.
Methods Mol Biol ; 2286: 25-48, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32468492

RESUMO

Non-enzymatically isolated primary dermal progenitor fibroblasts derived from fetal organ donations are ideal cell types for allogenic musculoskeletal regenerative therapeutic applications. These cell types are differentiated, highly proliferative in standard in vitro culture conditions and extremely stable throughout their defined lifespans. Technical simplicity, robustness of bioprocessing and relatively small therapeutic dose requirements enable pragmatic and efficient production of clinical progenitor fibroblast lots under cGMP standards. Herein we describe optimized and standardized monolayer culture expansion protocols using dermal progenitor fibroblasts isolated under a Fetal Transplantation Program for the establishment of GMP tiered Master, Working and End of Production cryopreserved Cell Banks. Safety, stability and quality parameters are assessed through stringent testing of progeny biological materials, in view of clinical application to human patients suffering from diverse cutaneous chronic and acute affections. These methods and approaches, coupled to adequate cell source optimization, enable the obtention of a virtually limitless source of highly consistent and safe biological therapeutic material to be used for innovative regenerative medicine applications.


Assuntos
Bancos de Espécimes Biológicos/normas , Fibroblastos/citologia , Guias de Prática Clínica como Assunto , Cultura Primária de Células/normas , Medicina Regenerativa/normas , Transplante de Células-Tronco/normas , Células Cultivadas , Derme/citologia , Humanos , Cultura Primária de Células/métodos , Medicina Regenerativa/métodos , Transplante de Células-Tronco/métodos , Preservação de Tecido/métodos , Preservação de Tecido/normas , Transplante Homólogo/métodos , Transplante Homólogo/normas
18.
Cells ; 10(10)2021 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-34685505

RESUMO

The objective of this review is to describe the evolution of lung tissue-derived diploid progenitor cell applications, ranging from historical biotechnological substrate functions for vaccine production and testing to current investigations around potential therapeutic use in respiratory tract regenerative medicine. Such cell types (e.g., MRC-5 or WI-38 sources) were extensively studied since the 1960s and have been continuously used over five decades as safe and sustainable industrial vaccine substrates. Recent research and development efforts around diploid progenitor lung cells (e.g., FE002-Lu or Walvax-2 sources) consist in qualification for potential use as optimal and renewed vaccine production substrates and, alternatively, for potential therapeutic applications in respiratory tract regenerative medicine. Potentially effective, safe, and sustainable cell therapy approaches for the management of inflammatory lung diseases or affections and related symptoms (e.g., COVID-19 patients and burn patient severe inhalation syndrome) using local homologous allogeneic cell-based or cell-derived product administrations are considered. Overall, lung tissue-derived progenitor cells isolated and produced under good manufacturing practices (GMP) may be used with high versatility. They can either act as key industrial platforms optimally conforming to specific pharmacopoeial requirements or as active pharmaceutical ingredients (API) for potentially effective promotion of lung tissue repair or regeneration.


Assuntos
Biotecnologia/métodos , Diploide , Pulmão/citologia , Medicina Regenerativa/métodos , Infecções Respiratórias/terapia , Animais , Bancos de Espécimes Biológicos , Vacinas contra COVID-19 , Linhagem Celular , Terapia Baseada em Transplante de Células e Tecidos , História do Século XX , História do Século XXI , Humanos , Pulmão/fisiologia , Regeneração , Medicina Regenerativa/história , SARS-CoV-2 , Transplante de Células-Tronco , Células-Tronco/citologia , Transplante Homólogo
19.
Methods Mol Biol ; 2286: 49-65, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32572700

RESUMO

Clinical experience gathered over two decades around therapeutic use of primary human dermal progenitor fibroblasts in burn patient populations has been at the forefront of regenerative medicine in Switzerland. Relative technical simplicity, ease of extensive serial multitiered banking, and high stability are major advantages of such cell types, assorted to ease of safety and traceability demonstration. Stringent optimization of cell source selection and standardization of biobanking protocols enables the safe and efficient harnessing of the considerable allogenic therapeutic potential yielded by primary progenitor cells. Swiss legal and regulatory requirements have led to the procurement of fetal tissues within a devised Fetal Progenitor Cell Transplantation Program in the Lausanne University Hospital. Proprietary nonenzymatic isolation of primary musculoskeletal cell types and subsequent establishment of progeny tiered cell banks under cGMP standards have enabled safe and effective management of acute and chronic cutaneous affections in various patient populations. Direct off-the-freezer seeding of viable dermal progenitor fibroblasts on a CE marked equine collagen scaffold is the current standard for delivery of the therapeutic biological materials to patients suffering from extensive and deep burns. Diversification in the clinical indications and delivery methods for these progenitor cells has produced excellent results for treatment of persistent ulcers, autograft donor site wounds, or chronic cutaneous affections such as eczema. Herein we describe the standard operating procedures for preparation and therapeutic deployment of the progenitor biological bandages within our translational musculoskeletal regenerative medicine program, as they are routinely used as adjuvants in our Burn Center to treat critically ailing patients.


Assuntos
Curativos Biológicos/normas , Células-Tronco Embrionárias Humanas/citologia , Guias de Prática Clínica como Assunto , Cultura Primária de Células/métodos , Reepitelização , Medicina Regenerativa/métodos , Preservação de Tecido/métodos , Curativos Biológicos/efeitos adversos , Queimaduras/terapia , Células Cultivadas , Humanos , Úlcera por Pressão/terapia , Cultura Primária de Células/normas , Medicina Regenerativa/normas , Ferida Cirúrgica/terapia , Preservação de Tecido/normas
20.
Bioengineering (Basel) ; 8(12)2021 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-34940374

RESUMO

Empirically studied by Dr. Brown-Séquard in the late 1800s, cytotherapies were later democratized by Dr. Niehans during the twentieth century in Western Switzerland. Many local cultural landmarks around the Léman Riviera are reminiscent of the inception of such cell-based treatments. Despite the discreet extravagance of the remaining heirs of "living cell therapy" and specific enforcements by Swiss health authorities, current interest in modern and scientifically sound cell-based regenerative medicine has never been stronger. Respective progress made in bioengineering and in biotechnology have enabled the clinical implementation of modern cell-based therapeutic treatments within updated medical and regulatory frameworks. Notably, the Swiss progenitor cell transplantation program has enabled the gathering of two decades of clinical experience in Lausanne for the therapeutic management of cutaneous and musculoskeletal affections, using homologous allogeneic cell-based approaches. While striking conceptual similarities exist between the respective works of the fathers of cytotherapy and of modern highly specialized clinicians, major and important iterative updates have been implemented, centered on product quality and risk-analysis-based patient safety insurance. This perspective article highlights some historical similarities and major evolutive differences, particularly regarding product safety and quality issues, characterizing the use of cell-based therapies in Switzerland over the past century. We outline the vast therapeutic potential to be harnessed for the benefit of overall patient health and the importance of specific scientific methodological aspects.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA