Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Pharmacol Res ; 183: 106401, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35987482

RESUMO

We previously demonstrated that prenatal exposure to valproic acid (VPA), an environmental model of autism spectrum disorder (ASD), leads to a hyperexcitable phenotype associated with downregulation of inward-rectifying potassium currents in nucleus accumbens (NAc) medium spiny neurons (MSNs) of adolescent rats. Aberrant mTOR pathway function has been associated with autistic-like phenotypes in multiple animal models, including gestational exposure to VPA. The purpose of this work was to probe the involvement of the mTOR pathway in VPA-induced alterations of striatal excitability. Adolescent male Wistar rats prenatally exposed to VPA were treated acutely with the mTOR inhibitor rapamycin and used for behavioral tests, ex vivo brain slice electrophysiology, single-neuron morphometric analysis, synaptic protein quantification and gene expression analysis in the NAc. We report that postnatal rapamycin ameliorates the social deficit and reverts the abnormal excitability, but not the inward-rectifying potassium current defect, of accumbal MSNs. Synaptic transmission and neuronal morphology were largely unaffected by prenatal VPA exposure or postnatal rapamycin treatment. Transcriptome analysis revealed extensive deregulation of genes implied in neurodevelopmental disorders and ionic mechanisms exerted by prenatal VPA, which was partially reverted by postnatal rapamycin. The results of this work support the existence of antagonistic interaction between mTOR and VPA-induced pathways on social behavior, neurophysiological phenotype and gene expression profile, thus prompting further investigation of the mTOR pathway in the quest for specific therapeutic targets in ASD.


Assuntos
Transtorno do Espectro Autista , Efeitos Tardios da Exposição Pré-Natal , Animais , Transtorno do Espectro Autista/induzido quimicamente , Transtorno do Espectro Autista/tratamento farmacológico , Transtorno do Espectro Autista/metabolismo , Comportamento Animal , Modelos Animais de Doenças , Feminino , Masculino , Neurônios/metabolismo , Fenótipo , Potássio , Gravidez , Ratos , Ratos Wistar , Sirolimo/farmacologia , Sirolimo/uso terapêutico , Serina-Treonina Quinases TOR/metabolismo , Ácido Valproico/farmacologia
2.
Proc Natl Acad Sci U S A ; 114(22): 5737-5742, 2017 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-28507142

RESUMO

Well-coordinated activation of all cardiomyocytes must occur on every heartbeat. At the cell level, a complex network of sarcolemmal invaginations, called the transverse-axial tubular system (TATS), propagates membrane potential changes to the cell core, ensuring synchronous and uniform excitation-contraction coupling. Although myocardial conduction of excitation has been widely described, the electrical properties of the TATS remain mostly unknown. Here, we exploit the formal analogy between diffusion and electrical conductivity to link the latter with the diffusional properties of TATS. Fluorescence recovery after photobleaching (FRAP) microscopy is used to probe the diffusion properties of TATS in isolated rat cardiomyocytes: A fluorescent dextran inside TATS lumen is photobleached, and signal recovery by diffusion of unbleached dextran from the extracellular space is monitored. We designed a mathematical model to correlate the time constant of fluorescence recovery with the apparent diffusion coefficient of the fluorescent molecules. Then, apparent diffusion is linked to electrical conductivity and used to evaluate the efficiency of the passive spread of membrane depolarization along TATS. The method is first validated in cells where most TATS elements are acutely detached by osmotic shock and then applied to probe TATS electrical conductivity in failing heart cells. We find that acute and pathological tubular remodeling significantly affect TATS electrical conductivity. This may explain the occurrence of defects in action potential propagation at the level of single T-tubules, recently observed in diseased cardiomyocytes.


Assuntos
Potenciais de Ação/fisiologia , Extensões da Superfície Celular/fisiologia , Sistema de Condução Cardíaco/fisiologia , Miócitos Cardíacos/fisiologia , Animais , Sinalização do Cálcio/fisiologia , Células Cultivadas , Acoplamento Excitação-Contração/fisiologia , Recuperação de Fluorescência Após Fotodegradação , Masculino , Modelos Teóricos , Miocárdio/metabolismo , Ratos , Ratos Endogâmicos WKY , Sarcolema/fisiologia , Retículo Sarcoplasmático/metabolismo
3.
J Physiol ; 596(17): 3841-3858, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29989169

RESUMO

KEY POINTS: Although optogenetics has clearly demonstrated the feasibility of cardiac manipulation, current optical stimulation strategies lack the capability to react acutely to ongoing cardiac wave dynamics. Here, we developed an all-optical platform to monitor and control electrical activity in real-time. The methodology was applied to restore normal electrical activity after atrioventricular block and to manipulate the intraventricular propagation of the electrical wavefront. The closed-loop approach was also applied to simulate a re-entrant circuit across the ventricle. The development of this innovative optical methodology provides the first proof-of-concept that a real-time all-optical stimulation can control cardiac rhythm in normal and abnormal conditions. ABSTRACT: Optogenetics has provided new insights in cardiovascular research, leading to new methods for cardiac pacing, resynchronization therapy and cardioversion. Although these interventions have clearly demonstrated the feasibility of cardiac manipulation, current optical stimulation strategies do not take into account cardiac wave dynamics in real time. Here, we developed an all-optical platform complemented by integrated, newly developed software to monitor and control electrical activity in intact mouse hearts. The system combined a wide-field mesoscope with a digital projector for optogenetic activation. Cardiac functionality could be manipulated either in free-run mode with submillisecond temporal resolution or in a closed-loop fashion: a tailored hardware and software platform allowed real-time intervention capable of reacting within 2 ms. The methodology was applied to restore normal electrical activity after atrioventricular block, by triggering the ventricle in response to optically mapped atrial activity with appropriate timing. Real-time intraventricular manipulation of the propagating electrical wavefront was also demonstrated, opening the prospect for real-time resynchronization therapy and cardiac defibrillation. Furthermore, the closed-loop approach was applied to simulate a re-entrant circuit across the ventricle demonstrating the capability of our system to manipulate heart conduction with high versatility even in arrhythmogenic conditions. The development of this innovative optical methodology provides the first proof-of-concept that a real-time optically based stimulation can control cardiac rhythm in normal and abnormal conditions, promising a new approach for the investigation of the (patho)physiology of the heart.


Assuntos
Arritmias Cardíacas/terapia , Bloqueio Atrioventricular/terapia , Terapia por Estimulação Elétrica/métodos , Átrios do Coração/citologia , Ventrículos do Coração/citologia , Optogenética/instrumentação , Potenciais de Ação , Animais , Arritmias Cardíacas/genética , Arritmias Cardíacas/fisiopatologia , Bloqueio Atrioventricular/genética , Bloqueio Atrioventricular/fisiopatologia , Técnicas Eletrofisiológicas Cardíacas , Átrios do Coração/fisiopatologia , Átrios do Coração/efeitos da radiação , Ventrículos do Coração/fisiopatologia , Ventrículos do Coração/efeitos da radiação , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Imagem Óptica
4.
J Mol Cell Cardiol ; 91: 42-51, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26714042

RESUMO

Abnormalities of cardiomyocyte Ca(2+) homeostasis and excitation-contraction (E-C) coupling are early events in the pathogenesis of hypertrophic cardiomyopathy (HCM) and concomitant determinants of the diastolic dysfunction and arrhythmias typical of the disease. T-tubule remodelling has been reported to occur in HCM but little is known about its role in the E-C coupling alterations of HCM. Here, the role of T-tubule remodelling in the electro-mechanical dysfunction associated to HCM is investigated in the Δ160E cTnT mouse model that expresses a clinically-relevant HCM mutation. Contractile function of intact ventricular trabeculae is assessed in Δ160E mice and wild-type siblings. As compared with wild-type, Δ160E trabeculae show prolonged kinetics of force development and relaxation, blunted force-frequency response with reduced active tension at high stimulation frequency, and increased occurrence of spontaneous contractions. Consistently, prolonged Ca(2+) transient in terms of rise and duration are also observed in Δ160E trabeculae and isolated cardiomyocytes. Confocal imaging in cells isolated from Δ160E mice reveals significant, though modest, remodelling of T-tubular architecture. A two-photon random access microscope is employed to dissect the spatio-temporal relationship between T-tubular electrical activity and local Ca(2+) release in isolated cardiomyocytes. In Δ160E cardiomyocytes, a significant number of T-tubules (>20%) fails to propagate action potentials, with consequent delay of local Ca(2+) release. At variance with wild-type, we also observe significantly increased variability of local Ca(2+) transient rise as well as higher Ca(2+)-spark frequency. Although T-tubule structural remodelling in Δ160E myocytes is modest, T-tubule functional defects determine non-homogeneous Ca(2+) release and delayed myofilament activation that significantly contribute to mechanical dysfunction.


Assuntos
Cardiomiopatia Hipertrófica/fisiopatologia , Acoplamento Excitação-Contração , Contração Miocárdica , Miócitos Cardíacos/patologia , Miofibrilas/patologia , Sarcolema/patologia , Citoesqueleto de Actina/metabolismo , Citoesqueleto de Actina/patologia , Citoesqueleto de Actina/ultraestrutura , Potenciais de Ação , Animais , Cálcio/metabolismo , Sinalização do Cálcio , Cardiomiopatia Hipertrófica/genética , Cardiomiopatia Hipertrófica/metabolismo , Cardiomiopatia Hipertrófica/patologia , Modelos Animais de Doenças , Expressão Gênica , Humanos , Transporte de Íons , Camundongos , Camundongos Knockout , Microscopia Confocal , Mutação , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/ultraestrutura , Miofibrilas/metabolismo , Miofibrilas/ultraestrutura , Imagem Óptica , Sarcolema/metabolismo , Sarcolema/ultraestrutura , Troponina T/genética , Troponina T/metabolismo
6.
Prog Biophys Mol Biol ; 154: 21-29, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32063273

RESUMO

Atrial fibrillation (AF) is the most common cardiac arrhythmia, associated with an increased risk of stroke and heart failure. Acute AF occurs in response to sudden increases of atrial hemodynamic load, leading to atrial stretch. The mechanisms of stretch-induced AF were investigated in large mammals with controversial results. We optimized an approach to monitor rat atrial electrical activity using a red-shifted voltage sensitive dye (VSD). The methodology includes cauterization of the main ventricular coronary arteries, allowing improved atrial staining by the VSD and appropriate atrial perfusion for long experiments. Next, we developed a rat model of acute biatrial dilation (ABD) through the insertion of latex balloons into both atria, which could be inflated with controlled volumes. A chronic model of atrial dilation (spontaneous hypertensive rats; SHR) was used for comparison. ABD was performed on atria from healthy Wistar-Kyoto (WKY) rats (WKY-ABD). The atria were characterized in terms of arrhythmias susceptibility, action potential duration and conduction velocity. The occurrence of arrhythmias in WKY-ABD was significantly higher compared to non-dilated WKY atria. In WKY-ABD we found a reduction of conduction velocity, similar to that observed in SHR atria, while action potential duration was unchanged. Low-dose caffeine was used to introduce a drop of CV in WKY atria (WKY-caff), quantitatively similar to the one observed after ABD, but no increased arrhythmia susceptibility was observed with caffeine only. In conclusion, CV decrease is not sufficient to promote arrhythmias; enlargement of atrial surface is essential to create a substrate for acute reentry-based arrhythmias.


Assuntos
Fibrilação Atrial/fisiopatologia , Dilatação/efeitos adversos , Átrios do Coração/fisiopatologia , Animais , Modelos Animais de Doenças , Suscetibilidade a Doenças , Fenômenos Eletrofisiológicos , Hemodinâmica , Ratos
7.
Minerva Anestesiol ; 66(10): 749-56, 2000 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-11194983

RESUMO

Ketorolac, a nonsteroidal anti-inflammatory drug (NSAID) largely used in adults, deserves particular attention for postoperative pain therapy in children, even if it is not officially approved for paediatric use. We have examined a lot of studies about the use of ketorolac for paediatric postoperative pain, pointing out pharmacological and pharmacokinetic properties and side effects. There are significant differences in pharmacokinetic parameters, doses, routes of administration, length of treatment, side effects, usage precautions and pharmacological interactions between children and adults. Amongst the many drugs available, ketorolac seems to be particularly efficient for postoperative pain therapy in children too.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Cetorolaco/farmacologia , Dor Pós-Operatória/tratamento farmacológico , Anti-Inflamatórios não Esteroides/efeitos adversos , Anti-Inflamatórios não Esteroides/uso terapêutico , Criança , Interações Medicamentosas , Gastroenteropatias/induzido quimicamente , Humanos , Cetorolaco/efeitos adversos , Cetorolaco/uso terapêutico , Dor Pós-Operatória/prevenção & controle
8.
Minerva Anestesiol ; 66(1-2): 45-53, 2000.
Artigo em Inglês | MEDLINE | ID: mdl-10736982

RESUMO

Ventricular fibrillation is the principal cause of sudden cardiac arrest and the electrical defibrillation is often the only effective therapy. A very interesting question is represented by the electric parameters of defibrillation shock. Today, monophasic waveform is widely used in Europe and in the United States, but, recently, the Food and Drug Administration grants approval for an automatic external defibrillator (AED) producing a biphasic pulse. In this review we discuss about the effectiveness and the safety of biphasic waveform, by examining a series of human studies between 1982 and 1999. We have found that available data are often incomplete, unclear, dishomogeneous and, consequently, difficult to compare. Furthermore, among the authors there is no concordance about the meaning of "safety", "effectiveness", "success", "equivalence" and "superiority" of biphasic versus monophasic shock: however, biphasic shock, that uses a lower energy level, seems to reduce post-defibrillation heart damage. Due to the lack of homogeneous studies it is not possible to state which kind of signal is more reliable, even if some clinical reports and experimental data seem to tribute to the biphasic waveform a better therapeutic effectiveness and safety. By examining the current scientific literature, we conclude that further studies have to be performed to definitively validate the use of biphasic shock.


Assuntos
Cardioversão Elétrica/métodos , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA