Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Environ Sci Technol ; 54(3): 1522-1532, 2020 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-31906621

RESUMO

The objective of this study was to advance analytical methods for detecting oil sands process-affected water (OSPW) seepage from mining containments and discriminating any such seepage from the natural bitumen background in groundwaters influenced by the Alberta McMurray formation. Improved sampling methods and quantitative analyses of two groups of monoaromatic acids were employed to analyze OSPW and bitumen-affected natural background groundwaters for source discrimination. Both groups of monoaromatic acids showed significant enrichment in OSPW, while ratios of O2/O4 containing heteroatomic ion classes of acid extractable organics (AEOs) did not exhibit diagnostic differences. Evaluating the monoaromatic acids to track a known plume of OSPW-affected groundwater confirmed their diagnostic abilities. A secondary objective was to assess anthropogenically derived artificial sweeteners and per- and polyfluoroalkyl substances (PFAS) as potential tracers for OSPW. Despite the discovery of acesulfame and PFAS in most OSPW samples, trace levels in groundwaters influenced by general anthropogenic activities preclude them as individual robust tracers. However, their inclusion with the other metrics employed in this study served to augment the tiered, weight of evidence methodology developed. This methodology was then used to confirm earlier findings of OSPW migrations into groundwater reaching the Athabasca River system adjacent to the reclaimed pond at Tar Island Dyke.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Alberta , Ácidos Carboxílicos , Hidrocarbonetos , Campos de Petróleo e Gás , Areia
2.
Rapid Commun Mass Spectrom ; 28(9): 1023-32, 2014 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-24677524

RESUMO

RATIONALE: The identification of key acid metabolites ('signature' metabolites) has allowed significant improvements to be made in our understanding of the biodegradation of petroleum hydrocarbons, in reservoir and in contaminated natural systems, such as aquifers and seawater. On this basis, anaerobic oxidation is now more widely accepted as one viable mechanism, for instance. However, identification of metabolites in the complex acid mixtures from petroleum degradation is challenging and would benefit from use of more highly resolving analytical methods. METHODS: Comprehensive two-dimensional gas chromatography/time-of-flight mass spectrometry (GCxGC/TOFMS) with both nominal mass and accurate mass measurement was used to study the complex mixtures of aromatic acids (as methyl esters) in petroleum fractions. RESULTS: Numerous mono- and di-aromatic acid isomers were identified in a commercial naphthenic acids fraction from petroleum and in an acids fraction from a biodegraded petroleum. In many instances, compounds were identified by comparison of mass spectral and retention time data with those of authentic compounds. CONCLUSIONS: The identification of a variety of alkyl naphthalene carboxylic and alkanoic and alkyl tetralin carboxylic and alkanoic acids, plus identifications of a range of alkyl indane acids, provides further evidence for 'signature' metabolites of biodegradation of aromatic petroleum hydrocarbons. Identifications such as these now offer the prospect of better differentiation of metabolites of bacterial processes (e.g. aerobic, methanogenic, sulphate-reducing) in polar petroleum fractions.


Assuntos
Cromatografia Gasosa-Espectrometria de Massas/métodos , Hidrocarbonetos Aromáticos/análise , Petróleo/análise , Biodegradação Ambiental
3.
Environ Sci Technol ; 48(5): 2660-70, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24446583

RESUMO

The objective of this study was to identify chemical components that could distinguish chemical mixtures in oil sands process-affected water (OSPW) that had potentially migrated to groundwater in the oil sands development area of northern Alberta, Canada. In the first part of the study, OSPW samples from two different tailings ponds and a broad range of natural groundwater samples were assessed with historically employed techniques as Level-1 analyses, including geochemistry, total concentrations of naphthenic acids (NAs) and synchronous fluorescence spectroscopy (SFS). While these analyses did not allow for reliable source differentiation, they did identify samples containing significant concentrations of oil sands acid-extractable organics (AEOs). In applying Level-2 profiling analyses using electrospray ionization high resolution mass spectrometry (ESI-HRMS) and comprehensive multidimensional gas chromatography time-of-flight mass spectrometry (GC × GC-TOF/MS) to samples containing appreciable AEO concentrations, differentiation of natural from OSPW sources was apparent through measurements of O2:O4 ion class ratios (ESI-HRMS) and diagnostic ions for two families of suspected monoaromatic acids (GC × GC-TOF/MS). The resemblance between the AEO profiles from OSPW and from 6 groundwater samples adjacent to two tailings ponds implies a common source, supporting the use of these complimentary analyses for source identification. These samples included two of upward flowing groundwater collected <1 m beneath the Athabasca River, suggesting OSPW-affected groundwater is reaching the river system.


Assuntos
Monitoramento Ambiental , Água Subterrânea/análise , Resíduos Industriais/análise , Campos de Petróleo e Gás/química , Poluição por Petróleo/análise , Poluentes Químicos da Água/análise , Alberta , Cromatografia Gasosa-Espectrometria de Massas , Dióxido de Silício/análise , Espectrometria de Fluorescência , Espectrometria de Massas por Ionização por Electrospray
4.
Mar Pollut Bull ; 198: 115836, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38007871

RESUMO

Identifying the sources of environmental oil contamination can be challenging, especially for oil in motile organisms such as fish. Lipophilic hydrocarbons from oil can bioaccumulate in fish adipose tissue and potentially provide a forensic "fingerprint" of the original oil. Herein, diamondoid hydrocarbon distributions were employed to provide such fingerprints. Indices produced from diamondoids were used to compare extracts from fish adipose tissues and the crude and fuel oils to which the fish were exposed under laboratory conditions. A suite of 20 diamondoids was found to have bioaccumulated in the dietary-exposed fish. Cross-plots of indices between fish and exposure oils were close to the ideal 1:1 relationship. Comparisons with diamondoid distributions of non-exposure oils produced overall, but not exclusively, weaker correlations. Linear Discriminatory Analysis on a combined set of 15 diamondoid and bicyclane molecular ratios was able to identify the exposure oils, so a use of both compound classes is preferable.


Assuntos
Óleos Combustíveis , Petróleo , Animais , Óleos , Hidrocarbonetos/análise , Óleos Combustíveis/análise , Peixes , Alimentos Marinhos/análise , Petróleo/análise
5.
Environ Toxicol Chem ; 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39110072

RESUMO

Environmental contamination of aquatic systems by per- and polyfluoroalkyl substances (PFAS) has generated significant health concerns. Remediation of contaminated sites such as the fire-fighting emergency training grounds that use aqueous film-forming foams is a high priority. Phytoremediation may help play a part in removing PFAS from such contaminated waters. We investigated the potential of the water fern Azolla filiculoides, which is used for phytoremediation of a wide range of contaminants, to uptake seven common PFAS (perfluorobutanoic acid [PFBA], perfluorobutane sulfonic acid [PFBS], perfluoroheptanoic acid [PFHpA], perfluorohexanoic acid [PFHxA], perfluorohexane sulfonic acid [PFHxS], perfluorooctanoic acid [PFOA], and perfluoropentanoic acid [PFPeA]), during a 12-day exposure to environmentally relevant concentrations delivered as equimolar mixtures: low (∑PFAS = 0.0123 ± 1.89 µmol L-1), medium (∑PFAS = 0.123 ± 2.88 µmol L-1), and high (∑PFAS = 1.39 µmol L-1) treatments, equivalent to approximately 5, 50, and 500 µg L-1 total PFAS, respectively. The possible phytotoxic effects of PFAS were measured at 3-day intervals using chlorophyll a content, photosystem II efficiency (Fv/Fm), performance index, and specific growth rate. The PFAS concentrations in plant tissue and water were also measured every 3 days using ultra-high-performance liquid chromatography-tandem mass spectrometry. Treatments with PFAS did not lead to any detectable phytotoxic effects. All seven PFAS were detected in plant tissue, with the greatest uptake occurring during the first 6 days of exposure. After 12 days of exposure, a maximum bioconcentration factor was recorded for PFBA of 1.30 and a minimum of 0.192 for PFBS. Consequently, the application of Azolla spp. as a stand-alone system for phytoremediation of PFAS in aquatic environments is not sufficient to substantially reduce PFAS concentrations. Environ Toxicol Chem 2024;00:1-12. © 2024 The Author(s). Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.

6.
Rapid Commun Mass Spectrom ; 27(23): 2648-54, 2013 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-24591026

RESUMO

RATIONALE: As a by-product of oil sands extraction, large volumes of oil sands process water (OSPW) are generated, which are contaminated with a large range of water-soluble organic compounds. The acids are thought to be derived from hydrocarbons via natural biodegradation pathways such as α- and ß-oxidation of alkyl substituents, which could produce mono- and diacids, for example. However, while several monoacids ('O2' species) have been identified, the presence of diacids (i.e. 'O4' species) has only been deduced from results obtained via Fourier transform infrared (FTIR) spectroscopy, Fourier transform ion cyclotron resonance high-resolution mass spectrometry (FTICR-HRMS) and nuclear magnetic resonance ((1)H-NMR) spectroscopy and the structures have never been confirmed. METHODS: An extract of an OSPW from a Canadian tailings pond was analysed and the retention times and the electron ionization mass spectra of some analytes were compared with those of bis-methyl esters of authentic diacids by gas chromatography × gas chromatography/time-of-flight mass spectrometry (GCxGC/TOFMS) in nominal and accurate mass configurations. RESULTS: Two diamondoid diacids (3-carboxymethyladamantane-1-carboxylic acid and adamantane-1,3-dicarboxylic acid) were firmly identified as their bis-methyl esters by retention time and mass spectral matching and several other structural isomers were more tentatively assigned. Diacids have substantially increased polarity over the hydrocarbon and monoacid species from which they probably derive: as late members of biodegradation processes they may be useful indicators of weathering and ageing, not only of OSPW, but potentially of crude oil residues more generally. CONCLUSIONS: Structures of O4 species in OSPW have been identified. This confirms pathways of microbial biodegradation, which were only postulated previously, and may be a further indication that remediation of OSPW toxicity can occur by natural microbial action. The presence and abundance of these diacids might therefore be useful as a measure of biodegradation and weathering.


Assuntos
Ácidos/química , Águas Residuárias/análise , Poluentes Químicos da Água/química , Canadá , Cromatografia Gasosa-Espectrometria de Massas , Estrutura Molecular , Campos de Petróleo e Gás
7.
Rapid Commun Mass Spectrom ; 27(2): 357-65, 2013 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-23239384

RESUMO

RATIONALE: The large volumes of 'supercomplex' mixtures of reputedly toxic organic compounds in acidic extracts of oil sands process-affected waters (OSPW) represent a challenging goal for complete characterisation. To date, comprehensive two-dimensional gas chromatography/time-of-flight mass spectrometry (GCxGC/TOFMS) has allowed the acquisition and interpretation of numerous electron ionisation mass spectra including many of those confirmed to be tricyclic and pentacyclic carboxylic acids by reference to the spectra and retention positions of authentic or synthetic compounds. This has allowed the toxicities of some of the identified acids to be determined and their environmental significance to be better assessed. METHODS: Synthesis, derivatisation (methyl, trideuteriomethyl and trimethylsilyl esters) and GCxGC/TOFMS with nominal mass and higher mass accuracy (ca. 5 ppm) were used to study three abundant unknown acids present in OSPW samples from two different industrial suppliers. RESULTS: GCxGC/TOFMS with nominal mass accuracy, of methyl, trideuteriomethyl and trimethylsilyl esters of three abundant acids in two OSPW samples, produced mass spectra consistent with their assignment as either C(16) tetracyclic acids or as isobaric pentacyclic C(15) hydroxy acids ('O(3)') or sulfur-containing ('SO(2)') species. The synthesis of several isomeric pentacyclic C(15) hydroxy acids and examination of the GCxGC retention times and mass spectra (nominal mass) of their derivatives suggested that the unknown OSPW acids were not hydroxy acids, and GCxGC/TOFMS with higher mass accuracy ruled out the possibility. The possibility that they were isobaric 'SO(2)' species could also be dismissed as this was inconsistent with accurate masses, the derivatisation reactions observed, the fragmentation patterns and the isotope distributions, which excluded the presence of sulphur. CONCLUSIONS: The data support the contention that the three abundant unknowns were indeed C(16) tetracyclic acids. An equally rigorous approach will be necessary to characterise further acids in such mixtures. This is important so that chemistry can be used to guide the search for toxic modes of action.


Assuntos
Ácidos Carboxílicos/análise , Ácidos Carboxílicos/química , Cromatografia Gasosa-Espectrometria de Massas/métodos , Campos de Petróleo e Gás/química , Ésteres/análise , Ésteres/química , Petróleo
8.
Environ Sci Technol ; 47(12): 6614-20, 2013 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-23742636

RESUMO

Process waters from oil sands industries (OSPW) have been reported to exhibit estrogenic effects. Although the compounds responsible are unknown, some aromatic naphthenic acids (NA) have been implicated. The present study was designed to investigate whether aromatic NA might cause such effects. Here we demonstrate induction of vitellogenin genes (vtg) in fish, which is a common bioassay used to indicate effects consistent with exposure to exogenous estrogens. Solutions in water of 20-2000 µg L(-1) of an extract of a total OSPW NA concentrate did not induce expression of vtg in larval zebrafish, consistent with earlier studies which showed that much higher NA concentrations of undiluted OSPW were needed. Although 20-2000 µg L(-1) of an esterifiable NA subfraction of the OSPW NA concentrate did induce expression, this was of much lower magnitude to that induced by much lower concentrations of 17α-ethynyl estradiol, indicating that the effect of the total NAs was only weak. However, given the high NA concentrations and large volumes of OSPW extant in Canada, it is important to ascertain which of these esterifiable NA in the OSPW produce the effect. Up to 1000 µg L(-1) of an OSPW subfraction containing only alicyclic NA, and considered by most authors to be NA sensu stricto, did not produce induction; but, as predicted, 10-1000 µg L(-1) of an aromatic NA fraction did. Such effects by the aromatic acids are again consistent with those of only a weak estrogenic substance. These findings may help to focus studies of the most environmentally significant OSPW-related pollutants, if reproduced in a greater range of OSPW.


Assuntos
Ácidos Carboxílicos/toxicidade , Vitelogeninas/genética , Animais , Cromatografia Gasosa-Espectrometria de Massas , Larva/efeitos dos fármacos , Larva/genética , Poluentes Químicos da Água/toxicidade , Peixe-Zebra/genética
9.
Environ Toxicol Chem ; 42(1): 7-18, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36165563

RESUMO

In the present study, we investigated the possibility of identifying the source oils of exposed fish using ratios of bicyclic sesquiterpane (bicyclane) chemical biomarkers. In the event of an oil spill, identification of source oil(s) for assessment, or for litigation purposes, typically uses diagnostic ratios of chemical biomarkers to produce characteristic oil "fingerprints." Although this has been applied in identifying oil residues in sediments, water, and sessile filtering organisms, so far as we are aware this has never been successfully demonstrated for oil-exposed fish. In a 35-day laboratory trial, juvenile Lates calcarifer (barramundi or Asian seabass) were exposed, via the diet (1% w/w), to either a heavy fuel oil or to Montara, an Australian medium crude oil. Two-dimensional gas chromatography with high-resolution mass spectrometry and gas chromatography-mass spectrometry were then used to measure selected ratios of the bicyclanes to examine whether the ratios were statistically reproducibly conserved in the fish tissues. Six diagnostic bicyclane ratios showed high correlation (r2 > 0.98) with those of each of the two source oils. A linear discriminatory analysis model showed that nine different petroleum products could be reproducibly discriminated using these bicyclane ratios. The model was then used to correctly identify the bicyclane profiles of each of the two exposure oils in the adipose tissue extracts of each of the 18 fish fed oil-enriched diets. From our initial study, bicyclane biomarkers appear to show good potential for providing reliable forensic fingerprints of the sources of oil contamination of exposed fish. Further research is needed to investigate the minimum exposure times required for bicyclane bioaccumulation to achieve detectable concentrations in fish adipose tissues and to determine bicyclane depuration rates once exposure to oil has ceased. Environ Toxicol Chem 2023;42:7-18. © 2022 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Assuntos
Poluentes Ambientais , Perciformes , Poluição por Petróleo , Petróleo , Poluentes Químicos da Água , Animais , Petróleo/análise , Poluentes Ambientais/análise , Austrália , Poluição por Petróleo/análise , Óleos , Biomarcadores , Poluentes Químicos da Água/análise
10.
Rapid Commun Mass Spectrom ; 26(5): 572-6, 2012 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-22302497

RESUMO

RATIONALE: Processing of the oil sands of Canada has produced large amounts of process-affected water (OSPW). Concerns have been raised over the possible environmental impacts of any leakage of OSPW from storage lagoons which contain toxicants, including organic acids. Natural weathering of oil sands deposits may also produce the toxicants, including the acids. Therefore, there is a need for differentiation of the possible natural and industrial sources of such toxicants and also for methods suitable for monitoring changes in the composition of OSPW during long-term storage. METHODS: Here we show in a simple preliminary study of the two samples currently available to us, by use of comprehensive two-dimensional gas chromatography/time-of-flight mass spectrometry (GCxGC/ToF-MS), the distributions of methyl esters of individual isomeric diamondoid acids in OSPW from lagoons with different histories and from different industrial operators. RESULTS: We show that the distributions of methyl esters of individual isomeric diamondoid acids, including methyladamantane carboxylic and ethanoic acids, identified by comparison with data for reference compounds, can be differentiated readily. The use of acids with known structures, each verified by authentic acids, known toxicities and known and/or predictable physicochemical properties, to distinguish the different sources is advantageous, since factors likely to control the fate and dispersion of the acids can then more easily be predicted. It is postulated that the differences observed in the relative amounts of some of the acids result from variable extents of bacterial transformation of the organic matter in OSPW. CONCLUSIONS: The differences in distributions of diamondoid acids clearly vary between the two samples of OSPW and may prove very useful for monitoring the fate of different sources of OSPW both in storage and in the wider environment, once a wider collection of representative samples is available for study.


Assuntos
Cromatografia Gasosa-Espectrometria de Massas , Óleos Industriais/análise , Dióxido de Silício/análise , Poluentes Químicos da Água/análise , Água/análise , Canadá , Cromatografia Gasosa-Espectrometria de Massas/métodos
11.
Mar Pollut Bull ; 180: 113791, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35665617

RESUMO

The International Marine Organization 2020 Global Sulfur Cap requires ships to burn fuels with <0.50% S and some countries require <0.10% S in certain Sulfur Emission Control Areas but little is known about these new types of fuels. Using both traditional GC-MS and more advanced chromatographic and mass spectrometry techniques, plus stable isotopic, δ13C and δ2H, analyses of pristane, phytane and n-alkanes, the organic components of a suite of three 0.50% S and three 0.10% S compliant fuels were characterized. Two oils were found to be near identical but all of the remaining oils could be forensically distinguished by comparison of their molecular biomarkers and by the profiles of the heterocyclic parent and alkylated homologues. Oils could also be differentiated by their δ13C and δ2H of n-alkanes and isoprenoids. This study provides important forensic data that may prove invaluable in the event of future oil spills.


Assuntos
Óleos Combustíveis , Alcanos/análise , Óleos Combustíveis/análise , Óleos , Navios , Enxofre/análise
12.
Rapid Commun Mass Spectrom ; 25(12): 1741-51, 2011 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-21598334

RESUMO

The identification of most individual members of the complex mixtures of carboxylic acids found in petroleum ('naphthenic acids') has eluded chemists for over a century; they remain unresolved by conventional gas chromatographic methods. Recently, however, we successfully used two-dimensional comprehensive gas chromatography/mass spectrometry to identify numerous individual diamondoid acids in the naphthenic acids of oil sands process water (OSPW). We have now applied the same methods to a study of a mixture of commercially available naphthenic acids originally refined from petroleum. The results confirm that OSPW and refined petroleum contain very different distributions of acids, as noted previously, although some of the diamondoid acids recently identified in OSPW were detectable in both. Rather, two-dimensional comprehensive gas chromatography/time-of-flight mass spectrometry (GCxGC/ToF-MS) of the methyl esters of the petroleum acids and of numerous acids synthesised for comparison showed that the former comprised mainly C(8-18) straight-chain, methyl-branched, acyclic isoprenoid, cyclohexyl and isomeric octahydropentalene, perhydroindane and perhydronaphthalene (decalin) acids. Some of the latter bicyclic acids occurred as both the non-alkyl-substituted isomers and the bicyclic ethanoic and propanoic acids. Also present in minor quantities was a range of phenyl carboxylic and substituted phenyl alkanoic acids, and traces of non-acids, including trimethylnaphthalenes, again identified by comparison with the synthesised compounds. These results represent some of the first identifications of multiple individual naphthenic acids in commercial mixtures originating from petroleum and provide a basis for future studies of the petroleum geochemistry, toxicities and environmental impacts of the acids. Furthermore, characterisation of the acids will be important for improving the understanding of the role of naphthenic acids in petroleum engineering, particularly for oil pipeline deposition problems.


Assuntos
Ácidos Carboxílicos/isolamento & purificação , Cromatografia Gasosa-Espectrometria de Massas/métodos , Petróleo/análise , Ácidos Carboxílicos/química , Indústrias Extrativas e de Processamento , Espectrometria de Massas por Ionização por Electrospray
13.
Rapid Commun Mass Spectrom ; 25(9): 1198-204, 2011 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-21488118

RESUMO

The oils sands industry of Canada produces large volumes of process water (OSPW) which is stored in large lagoons. The OSPW contains complex mixtures of somewhat toxic, water-soluble, acid-extractable organic matter sometimes called 'naphthenic acids' (NA). Concerns have been raised over the possible environmental impacts of leakage of OSPW and a need has therefore arisen for better characterisation of the NA. Recently, we reported the first identification of numerous individual tricyclic NA in OSPW by comprehensive two-dimensional gas chromatography/time-of-flight mass spectrometry (GCxGC/ToF-MS) of the methyl esters. The acids were diamondoid adamantane acids, resulting, it was proposed, from biotransformation of the corresponding alkyladamantane hydrocarbons, which is a known process. Biotransformation of higher alkylated diamondoid hydrocarbons was, until now, unknown but here we describe the identification of numerous pentacyclic NA as diamantane and alkyldiamantane acids, using the same methods. Further, we suggest tentative structures for some of the tetracyclic acids formed, we propose, by ring-opening of alkyldiamantanes. We suggest that this is further evidence that some of the acid-extractable organic matter in the OSPW originates from extensive biodegradation of the oil, whether in-reservoir or environmental, although other oxidative routes (e.g. processing) may also be possible. The results may be important for helping to better focus reclamation and remediation strategies for NA and for facilitating the identification of the sources of NA in contaminated environmental samples.


Assuntos
Adamantano/química , Ácidos Carboxílicos/química , Indústrias Extrativas e de Processamento , Cromatografia Gasosa-Espectrometria de Massas/métodos , Petróleo , Dióxido de Silício/química , Canadá , Água , Poluentes Químicos da Água/química
14.
Environ Sci Technol ; 45(22): 9776-82, 2011 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-21942822

RESUMO

Numerous studies have suggested that the toxicity of organic compounds containing at least one carboxylic acid group and broadly classified as "naphthenic acids", is of environmental concern. For example, the acute toxicity of the more than 1 billion m(3) of oil sands process-affected water and the hormonal activity of some offshore produced waters has been attributed to the acids. However, experimental evidence for the toxicity of the individual acids causing these effects has not been very forthcoming. Instead, most data have been gathered from assays of incompletely characterized extracts of the water, which may contain other toxic constituents. An alternative approach is to assay the individual identified toxicants. Since numerous petroleum-derived naphthenic acids and some in oil sands process water, have recently been identified, we were able to measure the toxicity of some individual acids to the bioluminescent bacterium, Vibrio fischeri. Thirty-five pure individual acids were either synthesized or purchased for this purpose. We also used the US EPA ECOSAR computer model to predict the toxicity of each acid to the water flea, Daphnia magna. Both are well-accepted toxicological screening end points. The results show how toxic some of the naphthenic acids really are (e.g., V. fischeri Effective Concentrations for 50% response (EC(50)) 0.004 to 0.7 mM) and reveal the influence of hydrophobicity and aqueous solubility on the toxicities. Comparison with measured toxicities of other known, but more minor, constituents of oil sands process water, such as polycyclic aromatic hydrocarbons and alkylphenols, helps place these toxicities into a wider context. Given the reported toxicological effects of naphthenic acids to other organisms (e.g., fish, plants), the toxicities of the acids to further end points should now be determined.


Assuntos
Aliivibrio fischeri/fisiologia , Ácidos Carboxílicos/toxicidade , Poluentes Ambientais/toxicidade , Animais , Daphnia/fisiologia
15.
Environ Sci Technol ; 45(7): 3154-9, 2011 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-21391632

RESUMO

Expansion of the oil sands industry of Canada has seen a concomitant increase in the amount of process water produced and stored in large lagoons known as tailings ponds. Concerns have been raised, particularly about the toxic complex mixtures of water-soluble naphthenic acids (NA) in the process water. To date, no individual NA have been identified, despite numerous attempts, and while the toxicity of broad classes of acids is of interest, toxicity is often structure-specific, so identification of individual acids may also be very important. Here we describe the chromatographic resolution and mass spectral identification of some individual NA from oil sands process water. We conclude that the presence of tricyclic diamondoid acids, never before even considered as NA, suggests an unprecedented degree of biodegradation of some of the oil in the oil sands. The identifications reported should now be followed by quantitative studies, and these used to direct toxicity assays of relevant NA and the method used to identify further NA to establish which, or whether all NA, are toxic. The two-dimensional comprehensive gas chromatography-mass spectrometry method described may also be important for helping to better focus reclamation/remediation strategies for NA as well as in facilitating the identification of the sources of NA in contaminated surface waters.


Assuntos
Ácidos Carboxílicos/análise , Diamante/análise , Petróleo/metabolismo , Poluentes Químicos da Água/análise , Biodegradação Ambiental , Biotransformação , Ácidos Carboxílicos/química , Ácidos Carboxílicos/metabolismo , Diamante/química , Diamante/metabolismo , Indústrias Extrativas e de Processamento , Cromatografia Gasosa-Espectrometria de Massas , Resíduos Industriais/análise , Dióxido de Silício , Poluentes Químicos da Água/química , Poluentes Químicos da Água/metabolismo
16.
Environ Sci Technol ; 45(22): 9806-15, 2011 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-22014158

RESUMO

The large volumes, acute toxicity, estrogenicity, and antiandrogenicity of process-affected waters accruing in tailings ponds from the operations of the Alberta oil sands industries pose a significant task for environmental reclamation. Synchronous fluorescence spectra (SFS) suggest that oil sands process-affected water (OSPW) may contain aromatic carboxylic acids, which are among the potentially environmentally important toxicants, but no such acids have yet been identified, limiting interpretations of the results of estrogenicity and other assays. Here we show that multidimensional comprehensive gas chromatography-mass spectrometry (GCxGC-MS) of methyl esters of acids in an OSPW sample produces mass spectra consistent with their assignment as C(19) and C(20) C-ring monoaromatic hydroxy steroid acids, D-ring opened hydroxy and nonhydroxy polyhydrophenanthroic acids with one aromatic and two alicyclic rings and A-ring opened steroidal keto acids. High resolution MS data support the assignment of several of the so-called 'O3' species. When fractions of distilled, esterified, OSPW acid-extractable organics were examined, the putative aromatics were mainly present in a high boiling fraction; when examined by argentation thin layer chromatography, some were present in a fraction with a retardation factor between that of the methyl esters of synthetic monoalicyclic and monoaromatic acids. Ultraviolet absorption spectra of these fractions indicated the presence of benzenoid moieties. SFS of model octahydro- and tetrahydrophenanthroic acids produced emissions at the characteristic excitation wavelengths observed in some OSPW extracts, consistent with the postulations from ultraviolet spectroscopy and mass spectrometry data. We suggest the acids originate from extensive biodegradation of C-ring monoaromatic steroid hydrocarbons and offer a means of differentiating residues at different biodegradation stages in tailings ponds. Structural similarities with estrone and estradiol imply that such compounds may account for some of the environmental estrogenic activity reported in OSPW acid-extractable organics and naphthenic acids.


Assuntos
Ácidos Carboxílicos/análise , Poluentes Ambientais/análise , Estrogênios/química , Petróleo/análise , Dióxido de Silício/química , Água/química , Ácidos Carboxílicos/química , Poluentes Ambientais/química , Cromatografia Gasosa-Espectrometria de Massas
17.
Environ Sci Technol ; 45(14): 6160-6, 2011 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-21671574

RESUMO

Alkylnaphthalenes (AN) are relatively water-soluble hydrocarbons which, following spillages of crude oils, have been widely reported in contaminated marine organisms such as mussels. In the present report we show, by tandem-gas chromatography-time-of-flight-mass spectrometry (GC × GC-ToF-MS), that the range of AN in contaminated wild mussels from the UK extends beyond the previously GC resolved isomers to those with at least seven substituent carbon atoms. Since surprisingly little information on AN toxicity to such marine organisms has been reported we synthesized two C(8) AN and measured the toxicity of C(2-8) AN to mussels (clearance rate assay). C(2-3) AN were appreciably toxic (concentration for 50% clearance rate inhibition, 48 h IC(50) 1.4-2.6 µmol g(-1) dry weight tissue), but several C(4), (6) and C(8) AN, including branched isomers expected to be resistant to biodegradation and more accumulative, were relatively nontoxic (48 h IC(50) > 10 µmol g(-1)) and longer term exposure (8d) failed to elicit a greater toxic response. The accumulation profiles of AN in laboratory mussels exposed to oil were similar to those of the wild mussels. Moreover, laboratory oil-exposed mussels depurated toxic C(2-3) AN within 5 days in clean water and clearance rates recovered. The latter might imply that, in contrast with branched alkyl benzenes tested previously, AN are of less toxic concern, but such a straightforward conclusion cannot necessarily be drawn; a synthetic branched C(8) AN persisted following depuration and was as toxic to mussels as a C(3) AN (IC(50) 1.3 µmol g(-1)). This indicates that the structures of AN are also important.


Assuntos
Bivalves/metabolismo , Poluentes Ambientais/análise , Naftalenos/análise , Petróleo/análise , Animais , Bivalves/efeitos dos fármacos , Inglaterra , Poluentes Ambientais/toxicidade , Cromatografia Gasosa-Espectrometria de Massas , Concentração Inibidora 50 , Estrutura Molecular , Naftalenos/química , Naftalenos/toxicidade , Fatores de Tempo
18.
Mar Pollut Bull ; 171: 112917, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34488148

RESUMO

Very Low Sulfur Fuel Oils (VSLFO, <0.5% S) are a new class of marine fuel oils, introduced to meet recent International Maritime Organization regulations. The MV Wakashio was reported to have released 1000 t of VLSFO when it grounded on a reef in Mauritius on 25th July 2020. A field sample of oily residue contaminating the Mauritian coast was collected on 16th August 2020 and compared with the Wakashio fuel oil. Both oils were analyzed for organic and elemental content, and stable isotope ratios δ13C and δ2H measured. Comprehensive two-dimensional gas chromatography with high-resolution mass spectrometry was used to identify and compare biomarkers resistant to weathering. The aromatic content in the VLSFO was relatively low suggesting that the potential for ecosystem harm arising from exposure to toxic components may be less than with traditional fuel oil spills. The Wakashio oil spill is, to our knowledge, the first documented spill involving VLSFO.


Assuntos
Óleos Combustíveis , Poluição por Petróleo , Ecossistema , Maurício , Enxofre
20.
Chemosphere ; 205: 98-107, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29689530

RESUMO

Petroleum acids, often called 'Naphthenic Acids' (NA), enter the environment in complex mixtures from numerous sources. These include from Produced and Process-Affected waters discharged from some oil industry activities, and from the environmental weathering of spilled crude oil hydrocarbons. Here, we test the hypothesis that individual NA within the complex mixtures can induce developmental abnormalities in fish, by screening a range of individual acids, with known chemical structures. Sixteen aromatic NA were tested using a Thamnocephalus platyrus (beavertail fairyshrimp) assay, to establish acute toxicity. Toxicities ranged from 568 to 8 µM, with the methylbiphenyl acid, 4-(p-tolyl)benzoic acid, most toxic. Next, five of the most toxic monoacids and for comparison, a diacid, were assayed using Danio rerio (zebrafish) embryos to test for lethality and developmental abnormalities. The toxicities were also predicted using Admet predictor™ software. Exposure to the five monoacids produced deformities in zebrafish embryos in a dose-dependent manner. Thus, exposure to 4-(p-tolyl)benzoic acid produced abnormalities in >90% of the embryos at concentrations of <1 µM; exposure to dehydroabietic acid caused pericardial edema and stunted growth in 100% of the embryos at 6 µM and exposure to pyrene-1-carboxylic acid caused 80% of embryos to be affected at 3 µM. The findings of this preliminary study therefore suggest that some aromatic acids are targets for more detailed mechanistic studies of mode of action. The results should help to focus on those NA which may be important for monitoring in oil industry wastewaters and polluted environmental samples.


Assuntos
Ácidos Carboxílicos/toxicidade , Embrião não Mamífero/anormalidades , Embrião não Mamífero/efeitos dos fármacos , Petróleo/toxicidade , Testes de Toxicidade Aguda/métodos , Poluentes Químicos da Água/toxicidade , Peixe-Zebra/embriologia , Animais , Embrião não Mamífero/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA