Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Neurobiol Lang (Camb) ; 4(1): 1-28, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36875176

RESUMO

Children with developmental language disorder (DLD) show relative weaknesses on rhythm tasks beyond their characteristic linguistic impairments. The current study compares preferred tempo and the width of an entrainment region for 5- to 7-year-old typically developing (TD) children and children with DLD and considers the associations with rhythm aptitude and expressive grammar skills in the two populations. Preferred tempo was measured with a spontaneous motor tempo task (tapping tempo at a comfortable speed), and the width (range) of an entrainment region was measured by the difference between the upper (slow) and lower (fast) limits of tapping a rhythm normalized by an individual's spontaneous motor tempo. Data from N = 16 children with DLD and N = 114 TD children showed that whereas entrainment-region width did not differ across the two groups, slowest motor tempo, the determinant of the upper (slow) limit of the entrainment region, was at a faster tempo in children with DLD vs. TD. In other words, the DLD group could not pace their slow tapping as slowly as the TD group. Entrainment-region width was positively associated with rhythm aptitude and receptive grammar even after taking into account potential confounding factors, whereas expressive grammar did not show an association with any of the tapping measures. Preferred tempo was not associated with any study variables after including covariates in the analyses. These results motivate future neuroscientific studies of low-frequency neural oscillatory mechanisms as the potential neural correlates of entrainment-region width and their associations with musical rhythm and spoken language processing in children with typical and atypical language development.

2.
Neurosci Biobehav Rev ; 136: 104588, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35259422

RESUMO

We conducted a systematic review and meta-analysis of 30 functional magnetic resonance imaging studies investigating processing of musical rhythms in neurotypical adults. First, we identified a general network for musical rhythm, encompassing all relevant sensory and motor processes (Beat-based, rest baseline, 12 contrasts) which revealed a large network involving auditory and motor regions. This network included the bilateral superior temporal cortices, supplementary motor area (SMA), putamen, and cerebellum. Second, we identified more precise loci for beat-based musical rhythms (Beat-based, audio-motor control, 8 contrasts) in the bilateral putamen. Third, we identified regions modulated by beat based rhythmic complexity (Complexity, 16 contrasts) which included the bilateral SMA-proper/pre-SMA, cerebellum, inferior parietal regions, and right temporal areas. This meta-analysis suggests that musical rhythm is largely represented in a bilateral cortico-subcortical network. Our findings align with existing theoretical frameworks about auditory-motor coupling to a musical beat and provide a foundation for studying how the neural bases of musical rhythm may overlap with other cognitive domains.


Assuntos
Música , Adulto , Percepção Auditiva , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico , Neuroimagem Funcional , Humanos , Imageamento por Ressonância Magnética
3.
Philos Trans R Soc Lond B Biol Sci ; 376(1835): 20200329, 2021 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-34420388

RESUMO

The development of rhythmicity is foundational to communicative and social behaviours in humans and many other species, and mechanisms of synchrony could be conserved across species. The goal of the current paper is to explore evolutionary hypotheses linking vocal learning and beat synchronization through genomic approaches, testing the prediction that genetic underpinnings of birdsong also contribute to the aetiology of human interactions with musical beat structure. We combined state-of-the-art-genomic datasets that account for underlying polygenicity of these traits: birdsong genome-wide transcriptomics linked to singing in zebra finches, and a human genome-wide association study of beat synchronization. Results of competitive gene set analysis revealed that the genetic architecture of human beat synchronization is significantly enriched for birdsong genes expressed in songbird Area X (a key nucleus for vocal learning, and homologous to human basal ganglia). These findings complement ethological and neural evidence of the relationship between vocal learning and beat synchronization, supporting a framework of some degree of common genomic substrates underlying rhythm-related behaviours in two clades, humans and songbirds (the largest evolutionary radiation of vocal learners). Future cross-species approaches investigating the genetic underpinnings of beat synchronization in a broad evolutionary context are discussed. This article is part of the theme issue 'Synchrony and rhythm interaction: from the brain to behavioural ecology'.


Assuntos
Genoma , Aprendizagem , Música , Periodicidade , Aves Canoras/genética , Vocalização Animal , Animais , Tentilhões/genética , Genoma Humano , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA