Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
EMBO J ; 33(4): 341-55, 2014 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-24473149

RESUMO

Parkinson's disease (PD)-associated Pink1 and Parkin proteins are believed to function in a common pathway controlling mitochondrial clearance and trafficking. Glial cell line-derived neurotrophic factor (GDNF) and its signaling receptor Ret are neuroprotective in toxin-based animal models of PD. However, the mechanism by which GDNF/Ret protects cells from degenerating remains unclear. We investigated whether the Drosophila homolog of Ret can rescue Pink1 and park mutant phenotypes. We report that a signaling active version of Ret (Ret(MEN2B) rescues muscle degeneration, disintegration of mitochondria and ATP content of Pink1 mutants. Interestingly, corresponding phenotypes of park mutants were not rescued, suggesting that the phenotypes of Pink1 and park mutants have partially different origins. In human neuroblastoma cells, GDNF treatment rescues morphological defects of PINK1 knockdown, without inducing mitophagy or Parkin recruitment. GDNF also rescues bioenergetic deficits of PINK knockdown cells. Furthermore, overexpression of Ret(MEN2B) significantly improves electron transport chain complex I function in Pink1 mutant Drosophila. These results provide a novel mechanism underlying Ret-mediated cell protection in a situation relevant for human PD.


Assuntos
Proteínas de Drosophila/deficiência , Proteínas de Drosophila/fisiologia , Drosophila melanogaster/genética , Mitocôndrias Musculares/ultraestrutura , Atrofia Muscular/prevenção & controle , Proteínas Serina-Treonina Quinases/deficiência , Proteínas Proto-Oncogênicas c-ret/fisiologia , Trifosfato de Adenosina/metabolismo , Animais , Apoptose , Autofagia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Dopamina/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/crescimento & desenvolvimento , Complexo I de Transporte de Elétrons/fisiologia , Genes Letais , Fator Neurotrófico Derivado de Linhagem de Célula Glial/farmacologia , Humanos , Neuroblastoma/patologia , Neurônios/ultraestrutura , Consumo de Oxigênio , Doença de Parkinson , Fenótipo , Proteínas Quinases/deficiência , Proteínas Quinases/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/fisiologia , Proteínas Proto-Oncogênicas c-ret/genética , Pupa , Transdução de Sinais/fisiologia , Ubiquitina-Proteína Ligases/deficiência , Ubiquitina-Proteína Ligases/genética
2.
EMBO Rep ; 16(2): 178-91, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25532219

RESUMO

In Drosophila, fibrillar flight muscles (IFMs) enable flight, while tubular muscles mediate other body movements. Here, we use RNA-sequencing and isoform-specific reporters to show that spalt major (salm) determines fibrillar muscle physiology by regulating transcription and alternative splicing of a large set of sarcomeric proteins. We identify the RNA-binding protein Arrest (Aret, Bruno) as downstream of salm. Aret shuttles between the cytoplasm and nuclei and is essential for myofibril maturation and sarcomere growth of IFMs. Molecularly, Aret regulates IFM-specific splicing of various salm-dependent sarcomeric targets, including Stretchin and wupA (TnI), and thus maintains muscle fiber integrity. As Aret and its sarcomeric targets are evolutionarily conserved, similar principles may regulate mammalian muscle morphogenesis.


Assuntos
Processamento Alternativo/fisiologia , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Músculo Esquelético/metabolismo , Miofibrilas/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Processamento Alternativo/genética , Animais , Drosophila , Drosophila melanogaster
3.
Nature ; 479(7373): 406-9, 2011 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-22094701

RESUMO

Flying insects oscillate their wings at high frequencies of up to 1,000 Hz and produce large mechanical forces of 80 W per kilogram of muscle. They utilize a pair of perpendicularly oriented indirect flight muscles that contain fibrillar, stretch-activated myofibres. In contrast, all other, more slowly contracting, insect body muscles have a tubular muscle morphology. Here we identify the transcription factor Spalt major (Salm) as a master regulator of fibrillar flight muscle fate in Drosophila. salm is necessary and sufficient to induce fibrillar muscle fate. salm switches the entire transcriptional program from tubular to fibrillar fate by regulating the expression and splicing of key sarcomeric components specific to each muscle type. Spalt function is conserved in insects evolutionarily separated by 280 million years. We propose that Spalt proteins switch myofibres from tubular to fibrillar fate during development, a function potentially conserved in the vertebrate heart--a stretch-activated muscle sharing features with insect flight muscle.


Assuntos
Evolução Biológica , Sequência Conservada , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/anatomia & histologia , Drosophila melanogaster/crescimento & desenvolvimento , Proteínas de Homeodomínio/metabolismo , Músculos/anatomia & histologia , Músculos/fisiologia , Fatores de Transcrição/metabolismo , Processamento Alternativo , Animais , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/genética , Proteínas Nucleares/metabolismo , Fatores de Transcrição/genética , Transcrição Gênica
4.
Nature ; 464(7286): 287-91, 2010 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-20220848

RESUMO

Systematic genetic approaches have provided deep insight into the molecular and cellular mechanisms that operate in simple unicellular organisms. For multicellular organisms, however, the pleiotropy of gene function has largely restricted such approaches to the study of early embryogenesis. With the availability of genome-wide transgenic RNA interference (RNAi) libraries in Drosophila, it is now possible to perform a systematic genetic dissection of any cell or tissue type at any stage of the lifespan. Here we apply these methods to define the genetic basis for formation and function of the Drosophila muscle. We identify a role in muscle for 2,785 genes, many of which we assign to specific functions in the organization of muscles, myofibrils or sarcomeres. Many of these genes are phylogenetically conserved, including genes implicated in mammalian sarcomere organization and human muscle diseases.


Assuntos
Drosophila melanogaster/embriologia , Genes de Insetos/genética , Animais , Biologia Computacional , Estudo de Associação Genômica Ampla , Biblioteca Genômica , Larva , Masculino , Músculos/embriologia , Interferência de RNA
5.
Front Syst Neurosci ; 4: 1, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20204156

RESUMO

Genetic mutants are invaluable for understanding the development, physiology and behaviour of Drosophila. Modern molecular genetic techniques enable the rapid generation of large numbers of different mutants. To phenotype these mutants sophisticated microscopy techniques are required, ideally allowing the 3D-reconstruction of the anatomy of an adult fly from a single scan. Ultramicroscopy enables up to cm fields of view, whilst providing micron resolution. In this paper, we present ultramicroscopy reconstructions of the flight musculature, the nervous system, and the digestive tract of entire, chemically cleared, drosophila in autofluorescent light. The 3D-reconstructions thus obtained verify that the anatomy of a whole fly, including the filigree spatial organization of the direct flight muscles, can be analysed from a single ultramicroscopy reconstruction. The recording procedure, including 3D-reconstruction using standard software, takes no longer than 30 min. Additionally, image segmentation, which would allow for further quantitative analysis, was performed.

6.
PLoS One ; 5(1): e8928, 2010 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-20126626

RESUMO

BACKGROUND: Systematic, large-scale RNA interference (RNAi) approaches are very valuable to systematically investigate biological processes in cell culture or in tissues of organisms such as Drosophila. A notorious pitfall of all RNAi technologies are potential false positives caused by unspecific knock-down of genes other than the intended target gene. The ultimate proof for RNAi specificity is a rescue by a construct immune to RNAi, typically originating from a related species. METHODOLOGY/PRINCIPAL FINDINGS: We show that primary sequence divergence in areas targeted by Drosophila melanogaster RNAi hairpins in five non-melanogaster species is sufficient to identify orthologs for 81% of the genes that are predicted to be RNAi refractory. We use clones from a genomic fosmid library of Drosophila pseudoobscura to demonstrate the rescue of RNAi phenotypes in Drosophila melanogaster muscles. Four out of five fosmid clones we tested harbour cross-species functionality for the gene assayed, and three out of the four rescue a RNAi phenotype in Drosophila melanogaster. CONCLUSIONS/SIGNIFICANCE: The Drosophila pseudoobscura fosmid library is designed for seamless cross-species transgenesis and can be readily used to demonstrate specificity of RNAi phenotypes in a systematic manner.


Assuntos
Drosophila/genética , Genômica , Interferência de RNA , Transgenes , Animais , Sequência de Bases , Técnicas de Silenciamento de Genes , Dados de Sequência Molecular , Homologia de Sequência do Ácido Nucleico , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA