Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Immunol ; 16(7): 708-17, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26054719

RESUMO

The transcription factors Batf3 and IRF8 are required for the development of CD8α(+) conventional dendritic cells (cDCs), but the basis for their actions has remained unclear. Here we identified two progenitor cells positive for the transcription factor Zbtb46 that separately generated CD8α(+) cDCs and CD4(+) cDCs and arose directly from the common DC progenitor (CDP). Irf8 expression in CDPs required prior autoactivation of Irf8 that was dependent on the transcription factor PU.1. Specification of the clonogenic progenitor of CD8α(+) cDCs (the pre-CD8 DC) required IRF8 but not Batf3. However, after specification of pre-CD8 DCs, autoactivation of Irf8 became Batf3 dependent at a CD8α(+) cDC-specific enhancer with multiple transcription factor AP1-IRF composite elements (AICEs) within the Irf8 superenhancer. CDPs from Batf3(-/-) mice that were specified toward development into pre-CD8 DCs failed to complete their development into CD8α(+) cDCs due to decay of Irf8 autoactivation and diverted to the CD4(+) cDC lineage.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica/imunologia , Células Dendríticas/imunologia , Fatores Reguladores de Interferon/imunologia , Proteínas Repressoras/imunologia , Células-Tronco/imunologia , Animais , Sequência de Bases , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Células da Medula Óssea/imunologia , Células da Medula Óssea/metabolismo , Antígeno CD24/imunologia , Antígeno CD24/metabolismo , Antígenos CD8/imunologia , Antígenos CD8/metabolismo , Células Cultivadas , Células Clonais/imunologia , Células Clonais/metabolismo , Células Dendríticas/metabolismo , Citometria de Fluxo , Fatores Reguladores de Interferon/genética , Fatores Reguladores de Interferon/metabolismo , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Dados de Sequência Molecular , Análise de Sequência com Séries de Oligonucleotídeos , Ligação Proteica , Receptores Imunológicos/imunologia , Receptores Imunológicos/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Homologia de Sequência do Ácido Nucleico , Células-Tronco/metabolismo , Transcriptoma/genética , Transcriptoma/imunologia
2.
Immunity ; 46(5): 849-862.e7, 2017 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-28514690

RESUMO

Monocytes are circulating, short-lived mononuclear phagocytes, which in mice and man comprise two main subpopulations. Murine Ly6C+ monocytes display developmental plasticity and are recruited to complement tissue-resident macrophages and dendritic cells on demand. Murine vascular Ly6C- monocytes patrol the endothelium, act as scavengers, and support vessel wall repair. Here we characterized population and single cell transcriptomes, as well as enhancer and promoter landscapes of the murine monocyte compartment. Single cell RNA-seq and transplantation experiments confirmed homeostatic default differentiation of Ly6C+ into Ly6C- monocytes. The main two subsets were homogeneous, but linked by a more heterogeneous differentiation intermediate. We show that monocyte differentiation occurred through de novo enhancer establishment and activation of pre-established (poised) enhancers. Generation of Ly6C- monocytes involved induction of the transcription factor C/EBPß and C/EBPß-deficient mice lacked Ly6C- monocytes. Mechanistically, C/EBPß bound the Nr4a1 promoter and controlled expression of this established monocyte survival factor.


Assuntos
Antígenos Ly/metabolismo , Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Genômica , Monócitos/metabolismo , Animais , Biomarcadores , Células da Medula Óssea/citologia , Células da Medula Óssea/metabolismo , Diferenciação Celular/genética , Análise por Conglomerados , Epigênese Genética , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Imunofenotipagem , Masculino , Camundongos , Camundongos Knockout , Células Precursoras de Monócitos e Macrófagos/classificação , Células Precursoras de Monócitos e Macrófagos/metabolismo , Monócitos/citologia , Monócitos/imunologia , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/genética , Fenótipo , Regiões Promotoras Genéticas , Ligação Proteica
3.
Development ; 137(22): 3835-45, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20978075

RESUMO

Differentiation of epithelial cells and morphogenesis of epithelial tubes or layers is closely linked with the establishment and remodeling of the apical junctional complex, which includes adherens junctions and tight junctions. Little is known about the transcriptional control of apical junctional complex components. Here, we show that the transcription factor grainyhead-like 2 (Grhl2), an epithelium-specific mammalian homolog of Drosophila Grainyhead, is essential for adequate expression of the adherens junction gene E-cadherin and the tight junction gene claudin 4 (Cldn4) in several types of epithelia, including gut endoderm, surface ectoderm and otic epithelium. We have generated Grhl2 mutant mice to demonstrate defective molecular composition of the apical junctional complex in these compartments that coincides with the occurrence of anterior and posterior neural tube defects. Mechanistically, we show that Grhl2 specifically associates with cis-regulatory elements localized at the Cldn4 core promoter and within intron 2 of the E-cadherin gene. Cldn4 promoter activity in epithelial cells is crucially dependent on the availability of Grhl2 and on the integrity of the Grhl2-associated cis-regulatory element. At the E-cadherin locus, the intronic Grhl2-associated cis-regulatory region contacts the promoter via chromatin looping, while loss of Grhl2 leads to a specific decrease of activating histone marks at the E-cadherin promoter. Together, our data provide evidence that Grhl2 acts as a target gene-associated transcriptional activator of apical junctional complex components and, thereby, crucially participates in epithelial differentiation.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Junções Intercelulares/química , Fatores de Transcrição/metabolismo , Animais , Caderinas/metabolismo , Diferenciação Celular , Linhagem Celular , Claudina-4 , Cães , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Humanos , Junções Intercelulares/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Fatores de Transcrição/genética
4.
Blood ; 118(8): 2275-84, 2011 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-21730352

RESUMO

The differentiation of HSCs into myeloid lineages requires the transcription factor PU.1. Whereas PU.1-dependent induction of myeloid-specific target genes has been intensively studied, negative regulation of stem cell or alternate lineage programs remains incompletely characterized. To test for such negative regulatory events, we searched for PU.1-controlled microRNAs (miRs) by expression profiling using a PU.1-inducible myeloid progenitor cell line model. We provide evidence that PU.1 directly controls expression of at least 4 of these miRs (miR-146a, miR-342, miR-338, and miR-155) through temporally dynamic occupation of binding sites within regulatory chromatin regions adjacent to their genomic coding loci. Ectopic expression of the most robustly induced PU.1 target miR, miR-146a, directed the selective differentiation of HSCs into functional peritoneal macrophages in mouse transplantation assays. In agreement with this observation, disruption of Dicer expression or specific antagonization of miR-146a function inhibited the formation of macrophages during early zebrafish (Danio rerio) development. In the present study, we describe a PU.1-orchestrated miR program that mediates key functions of PU.1 during myeloid differentiation.


Assuntos
Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Macrófagos Peritoneais/citologia , Macrófagos Peritoneais/metabolismo , MicroRNAs/genética , Proteínas Proto-Oncogênicas/genética , Transativadores/genética , Animais , Diferenciação Celular/genética , Linhagem Celular , Linhagem da Célula/genética , Técnicas In Vitro , Camundongos , Camundongos Endogâmicos C57BL , Mielopoese/genética , Proteínas Proto-Oncogênicas/antagonistas & inibidores , RNA Interferente Pequeno/genética , Transativadores/antagonistas & inibidores , Peixe-Zebra/embriologia , Peixe-Zebra/genética
5.
Blood ; 117(10): 2827-38, 2011 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-21239694

RESUMO

The transcription factor PU.1 occupies a central role in controlling myeloid and early B-cell development, and its correct lineage-specific expression is critical for the differentiation choice of hematopoietic progenitors. However, little is known of how this tissue-specific pattern is established. We previously identified an upstream regulatory cis element whose targeted deletion in mice decreases PU.1 expression and causes leukemia. We show here that the upstream regulatory cis element alone is insufficient to confer physiologic PU.1 expression in mice but requires the cooperation with other, previously unidentified elements. Using a combination of transgenic studies, global chromatin assays, and detailed molecular analyses we present evidence that PU.1 is regulated by a novel mechanism involving cross talk between different cis elements together with lineage-restricted autoregulation. In this model, PU.1 regulates its expression in B cells and macrophages by differentially associating with cell type-specific transcription factors at one of its cis-regulatory elements to establish differential activity patterns at other elements.


Assuntos
Linfócitos B/metabolismo , Regulação da Expressão Gênica/genética , Células Mieloides/metabolismo , Proteínas Proto-Oncogênicas/genética , Elementos Reguladores de Transcrição/genética , Transativadores/genética , Animais , Southern Blotting , Western Blotting , Separação Celular , Retroalimentação Fisiológica/fisiologia , Citometria de Fluxo , Expressão Gênica , Hematopoese/genética , Humanos , Camundongos , Camundongos Transgênicos , Análise de Sequência com Séries de Oligonucleotídeos , Proteínas Proto-Oncogênicas/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transativadores/metabolismo
6.
Stem Cell Reports ; 8(2): 346-359, 2017 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-28111277

RESUMO

The lymphoid-myeloid transdifferentiation potentials of members of the C/EBP family (C/EBPα, ß, δ, and ε) were compared in v-Abl-immortalized primary B cells. Conversion of B cells to macrophages was readily induced by the ectopic expression of any C/EBP, and enhanced by endogenous C/EBPα and ß activation. High transgene expression of C/EBPß or C/EBPε, but not of C/EBPα or C/EBPδ, also induced the formation of granulocytes. Granulocytes and macrophages emerged in a mutually exclusive manner. C/EBPß-expressing B cells produced granulocyte-macrophage progenitor (GMP)-like progenitors when subjected to selective pressure to eliminate lymphoid cells. The GMP-like progenitors remained self-renewing and cytokine-independent, and continuously produced macrophages and granulocytes. In addition to their suitability to study myelomonocytic lineage bifurcation, lineage-switched GMP-like progenitors could reflect the features of the lympho-myeloid lineage switch observed in leukemic progression.


Assuntos
Linfócitos B/citologia , Linfócitos B/metabolismo , Proteínas Estimuladoras de Ligação a CCAAT/genética , Transdiferenciação Celular/genética , Células Progenitoras de Granulócitos e Macrófagos/citologia , Células Progenitoras de Granulócitos e Macrófagos/metabolismo , Animais , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Diferenciação Celular , Linhagem da Célula/genética , Proliferação de Células , Dosagem de Genes , Hematopoese/genética , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Humanos , Camundongos , Família Multigênica , Fenótipo
7.
J Mol Biol ; 427(3): 670-87, 2015 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-25172539

RESUMO

Cellular commitment to differentiation requires a tightly synchronized, spatial-temporal interaction of regulatory proteins with the basic DNA and chromatin. A complex network of mechanisms involving induction of lineage instructive transcription factors, installation or removal of histone modifications and changes in the DNA methylation pattern locally orchestrate the three-dimensional chromatin structure and determine cell fate. Maturation of myeloid lineages from hematopoietic stem cells has emerged as a powerful model to study those principles of chromatin mechanisms in cellular differentiation and lineage fate selection. This review summarizes recent knowledge and puts forward novel ideas on how dynamics in the epigenetic landscape of myeloid cells shape the development, immune activation and leukemic transformation outcome.


Assuntos
Diferenciação Celular , Cromatina/fisiologia , Células Mieloides/citologia , Animais , Metilação de DNA , Epigênese Genética , Humanos , Células Mieloides/metabolismo
8.
J Exp Med ; 210(11): 2239-56, 2013 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-24101380

RESUMO

Progression and disease relapse of chronic myeloid leukemia (CML) depends on leukemia-initiating cells (LIC) that resist treatment. Using mouse genetics and a BCR-ABL model of CML, we observed cross talk between Wnt/ß-catenin signaling and the interferon-regulatory factor 8 (Irf8). In normal hematopoiesis, activation of ß-catenin results in up-regulation of Irf8, which in turn limits oncogenic ß-catenin functions. Self-renewal and myeloproliferation become dependent on ß-catenin in Irf8-deficient animals that develop a CML-like disease. Combined Irf8 deletion and constitutive ß-catenin activation result in progression of CML into fatal blast crisis, elevated leukemic potential of BCR-ABL-induced LICs, and Imatinib resistance. Interestingly, activated ß-catenin enhances a preexisting Irf8-deficient gene signature, identifying ß-catenin as an amplifier of progression-specific gene regulation in the shift of CML to blast crisis. Collectively, our data uncover Irf8 as a roadblock for ß-catenin-driven leukemia and imply both factors as targets in combinatorial therapy.


Assuntos
Progressão da Doença , Resistencia a Medicamentos Antineoplásicos , Fatores Reguladores de Interferon/metabolismo , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Via de Sinalização Wnt , Animais , Benzamidas/farmacologia , Crise Blástica/genética , Crise Blástica/patologia , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células-Tronco Hematopoéticas/efeitos dos fármacos , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/patologia , Humanos , Mesilato de Imatinib , Imunofenotipagem , Fatores Reguladores de Interferon/deficiência , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Camundongos , Células Mieloides/efeitos dos fármacos , Células Mieloides/metabolismo , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Piperazinas/farmacologia , Pirimidinas/farmacologia , Células da Side Population/efeitos dos fármacos , Células da Side Population/metabolismo , Células da Side Population/patologia
9.
Cell Rep ; 3(5): 1617-28, 2013 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-23623495

RESUMO

Dendritic cells (DCs) are essential regulators of immune responses; however, transcriptional mechanisms that establish DC lineage commitment are poorly defined. Here, we report that the PU.1 transcription factor induces specific remodeling of the higher-order chromatin structure at the interferon regulatory factor 8 (Irf8) gene to initiate DC fate choice. An Irf8 reporter mouse enabled us to pinpoint an initial progenitor stage at which DCs separate from other myeloid lineages in the bone marrow. In the absence of Irf8, this progenitor undergoes DC-to-neutrophil reprogramming, indicating that DC commitment requires an active, Irf8-dependent escape from alternative myeloid lineage potential. Mechanistically, myeloid Irf8 expression depends on high PU.1 levels, resulting in local chromosomal looping and activation of a lineage- and developmental-stage-specific cis-enhancer. These data delineate PU.1 as a concentration-dependent rheostat of myeloid lineage selection by controlling long-distance contacts between regulatory elements and suggest that specific higher-order chromatin remodeling at the Irf8 gene determines DC differentiation.


Assuntos
Montagem e Desmontagem da Cromatina , Cromatina/metabolismo , Células Dendríticas/citologia , Fatores Reguladores de Interferon/genética , Proteínas Proto-Oncogênicas/metabolismo , Transativadores/metabolismo , Animais , Sequência de Bases , Células da Medula Óssea/citologia , Diferenciação Celular , Linhagem da Célula , Células Cultivadas , Células Dendríticas/metabolismo , Humanos , Fatores Reguladores de Interferon/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células Mieloides/citologia , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas/química , Transativadores/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA