Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proteomics ; 21(2): e2000246, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33111431

RESUMO

The genome of coronaviruses, including SARS-CoV-2, encodes for two proteases, a papain like (PLpro ) protease and the so-called main protease (Mpro ), a chymotrypsin-like cysteine protease, also named 3CLpro or non-structural protein 5 (nsp5). Mpro is activated by autoproteolysis and is the main protease responsible for cutting the viral polyprotein into functional units. Aside from this, it is described that Mpro proteases are also capable of processing host proteins, including those involved in the host innate immune response. To identify substrates of the three main proteases from SARS-CoV, SARS-CoV-2, and hCoV-NL63 coronviruses, an LC-MS based N-terminomics in vitro analysis is performed using recombinantly expressed proteases and lung epithelial and endothelial cell lysates as substrate pools. For SARS-CoV-2 Mpro , 445 cleavage events from more than 300 proteins are identified, while 151 and 331 Mpro derived cleavage events are identified for SARS-CoV and hCoV-NL63, respectively. These data enable to better understand the cleavage site specificity of the viral proteases and will help to identify novel substrates in vivo. All data are available via ProteomeXchange with identifier PXD021406.


Assuntos
COVID-19/virologia , Proteases 3C de Coronavírus/metabolismo , Coronavirus Humano NL63/enzimologia , Fragmentos de Peptídeos/análise , SARS-CoV-2/enzimologia , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/enzimologia , Proteínas Virais/metabolismo , COVID-19/metabolismo , Células Cultivadas , Células Endoteliais/metabolismo , Células Endoteliais/virologia , Células Epiteliais/metabolismo , Células Epiteliais/virologia , Fator de Iniciação Eucariótico 4G/metabolismo , Interações Hospedeiro-Patógeno , Humanos , Pulmão/metabolismo , Pulmão/virologia , Especificidade por Substrato
2.
Biol Chem ; 399(7): 751-772, 2018 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-29894295

RESUMO

Protein crystallization in living cells has been observed surprisingly often as a native assembly process during the past decades, and emerging evidence indicates that this phenomenon is also accessible for recombinant proteins. But only recently the advent of high-brilliance synchrotron sources, X-ray free-electron lasers, and improved serial data collection strategies has allowed the use of these micrometer-sized crystals for structural biology. Thus, in cellulo crystallization could offer exciting new possibilities for proteins that do not crystallize applying conventional approaches. In this review, we comprehensively summarize the current knowledge of intracellular protein crystallization. This includes an overview of the cellular functions, the physical properties, and, if known, the mode of regulation of native in cellulo crystal formation, complemented with a discussion of the reported crystallization events of recombinant proteins and the current method developments to successfully collect X-ray diffraction data from in cellulo crystals. Although the intracellular protein self-assembly mechanisms are still poorly understood, regulatory differences between native in cellulo crystallization linked to a specific function and accidently crystallizing proteins, either disease associated or recombinantly introduced, become evident. These insights are important to systematically exploit living cells as protein crystallization chambers in the future.


Assuntos
Bactérias/química , Músculo Esquelético/química , Oócitos/química , Pichia/química , Proteínas/química , Animais , Bactérias/citologia , Sobrevivência Celular , Cristalografia por Raios X , Humanos , Músculo Esquelético/citologia , Tamanho da Partícula , Pichia/citologia , Propriedades de Superfície
3.
J Virol ; 88(1): 82-98, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24131714

RESUMO

Nonstructural protein 5A (NS5A) of bovine viral diarrhea virus (BVDV) is a hydrophilic phosphoprotein with RNA binding activity and a critical component of the viral replicase. In silico analysis suggests that NS5A encompasses three domains interconnected by two low-complexity sequences (LCSs). While domain I harbors two functional determinants, an N-terminal amphipathic helix important for membrane association, and a Zn-binding site essential for RNA replication, the structure and function of the C-terminal half of NS5A are still ill defined. In this study, we introduced a panel of 10 amino acid deletions covering the C-terminal half of NS5A. In the context of a highly efficient monocistronic replicon, deletions in LCS I and the N-terminal part of domain II, as well as in domain III, were tolerated with regard to RNA replication. When introduced into a bicistronic replicon, only deletions in LCS I and the N-terminal part of domain II were tolerated. In the context of the viral full-length genome, these mutations allowed residual virion morphogenesis. Based on these data, a functional monocistronic BVDV replicon coding for an NS5A variant with an insertion of the fluorescent protein mCherry was constructed. Live cell imaging demonstrated that a fraction of NS5A-mCherry localizes to the surface of lipid droplets. Taken together, this study provides novel insights into the functions of BVDV NS5A. Moreover, we established the first pestiviral replicon expressing fluorescent NS5A-mCherry to directly visualize functional viral replication complexes by live cell imaging.


Assuntos
Vírus da Diarreia Viral Bovina/metabolismo , Proteínas não Estruturais Virais/fisiologia , Animais , Sequência de Bases , Bovinos , Células Cultivadas , Primers do DNA , Vírus da Diarreia Viral Bovina/fisiologia , Eletroforese em Gel de Poliacrilamida , Eletroporação , Proteínas não Estruturais Virais/genética
4.
J Appl Crystallogr ; 57(Pt 2): 266-275, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38596734

RESUMO

In cellulo crystallization is a rare event in nature. Recent advances that have made use of heterologous overexpression can promote the intracellular formation of protein crystals, but new tools are required to detect and characterize these targets in the complex cell environment. The present work makes use of Mask R-CNN, a convolutional neural network (CNN)-based instance segmentation method, for the identification of either single or multi-shaped crystals growing in living insect cells, using conventional bright field images. The algorithm can be rapidly adapted to recognize different targets, with the aim of extracting relevant information to support a semi-automated screening pipeline, in order to aid the development of the intracellular protein crystallization approach.

5.
Nat Commun ; 15(1): 1709, 2024 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-38402242

RESUMO

With the advent of serial X-ray crystallography on microfocus beamlines at free-electron laser and synchrotron facilities, the demand for protein microcrystals has significantly risen in recent years. However, by in vitro crystallization extensive efforts are usually required to purify proteins and produce sufficiently homogeneous microcrystals. Here, we present InCellCryst, an advanced pipeline for producing homogeneous microcrystals directly within living insect cells. Our baculovirus-based cloning system enables the production of crystals from completely native proteins as well as the screening of different cellular compartments to maximize chances for protein crystallization. By optimizing cloning procedures, recombinant virus production, crystallization and crystal detection, X-ray diffraction data can be collected 24 days after the start of target gene cloning. Furthermore, improved strategies for serial synchrotron diffraction data collection directly from crystals within living cells abolish the need to purify the recombinant protein or the associated microcrystals.


Assuntos
Lasers , Síncrotrons , Cristalografia por Raios X , Cristalização , Proteínas Recombinantes/genética
6.
IUCrJ ; 8(Pt 4): 665-677, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34258014

RESUMO

The crystallization of recombinant proteins in living cells is an exciting new approach in structural biology. Recent success has highlighted the need for fast and efficient diffraction data collection, optimally directly exposing intact crystal-containing cells to the X-ray beam, thus protecting the in cellulo crystals from environmental challenges. Serial femtosecond crystallography (SFX) at free-electron lasers (XFELs) allows the collection of detectable diffraction even from tiny protein crystals, but requires very fast sample exchange to utilize each XFEL pulse. Here, an efficient approach is presented for high-resolution structure elucidation using serial femtosecond in cellulo diffraction of micometre-sized crystals of the protein HEX-1 from the fungus Neurospora crassa on a fixed target. Employing the fast and highly accurate Roadrunner II translation-stage system allowed efficient raster scanning of the pores of micro-patterned, single-crystalline silicon chips loaded with living, crystal-containing insect cells. Compared with liquid-jet and LCP injection systems, the increased hit rates of up to 30% and reduced background scattering enabled elucidation of the HEX-1 structure. Using diffraction data from only a single chip collected within 12 min at the Linac Coherent Light Source, a 1.8 Šresolution structure was obtained with significantly reduced sample consumption compared with previous SFX experiments using liquid-jet injection. This HEX-1 structure is almost superimposable with that previously determined using synchrotron radiation from single HEX-1 crystals grown by sitting-drop vapour diffusion, validating the approach. This study demonstrates that fixed-target SFX using micro-patterned silicon chips is ideally suited for efficient in cellulo diffraction data collection using living, crystal-containing cells, and offers huge potential for the straightforward structure elucidation of proteins that form intracellular crystals at both XFELs and synchrotron sources.

7.
Acta Crystallogr D Struct Biol ; 77(Pt 6): 820-834, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-34076595

RESUMO

Fixed-target serial crystallography has become an important method for the study of protein structure and dynamics at synchrotrons and X-ray free-electron lasers. However, sample homogeneity, consumption and the physical stress on samples remain major challenges for these high-throughput experiments, which depend on high-quality protein microcrystals. The batch crystallization procedures that are typically applied require time- and sample-intensive screening and optimization. Here, a simple protein crystallization method inside the features of the HARE serial crystallography chips is reported that circumvents batch crystallization and allows the direct transfer of canonical vapor-diffusion conditions to in-chip crystallization. Based on conventional hanging-drop vapor-diffusion experiments, the crystallization solution is distributed into the wells of the HARE chip and equilibrated against a reservoir with mother liquor. Using this simple method, high-quality microcrystals were generated with sufficient density for the structure determination of four different proteins. A new protein variant was crystallized using the protein concentrations encountered during canonical crystallization experiments, enabling structure determination from ∼55 µg of protein. Additionally, structure determination from intracellular crystals grown in insect cells cultured directly in the features of the HARE chips is demonstrated. In cellulo crystallization represents a comparatively unexplored space in crystallization, especially for proteins that are resistant to crystallization using conventional techniques, and eliminates any need for laborious protein purification. This in-chip technique avoids harvesting the sensitive crystals or any further physical handling of the crystal-containing cells. These proof-of-principle experiments indicate the potential of this method to become a simple alternative to batch crystallization approaches and also as a convenient extension to canonical crystallization screens.


Assuntos
Cristalografia por Raios X/métodos , Proteínas/química , Estudo de Prova de Conceito
8.
J Appl Crystallogr ; 53(Pt 5): 1169-1180, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-33117106

RESUMO

Crystallization of recombinant proteins in living cells is an exciting new approach for structural biology that provides an alternative to the time-consuming optimization of protein purification and extensive crystal screening steps. Exploiting the potential of this approach requires a more detailed understanding of the cellular processes involved and versatile screening strategies for crystals in a cell culture. Particularly if the target protein forms crystalline structures of unknown morphology only in a small fraction of cells, their detection by applying standard visualization techniques can be time consuming and difficult owing to the environmental challenges imposed by the living cells. In this study, a high-brilliance and low-background bioSAXS beamline is employed for rapid and sensitive detection of protein microcrystals grown within insect cells. On the basis of the presence of Bragg peaks in the recorded small-angle X-ray scattering profiles, it is possible to assess within seconds whether a cell culture contains microcrystals, even in a small percentage of cells. Since such information cannot be obtained by other established detection methods in this time frame, this screening approach has the potential to overcome one of the bottlenecks of intracellular crystal detection. Moreover, the association of the Bragg peak positions in the scattering curves with the unit-cell composition of the protein crystals raises the possibility of investigating the impact of environmental conditions on the crystal structure of the intracellular protein crystals. This information provides valuable insights helping to further understand the in cellulo crystallization process.

9.
Nat Commun ; 4: 1553, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23462996

RESUMO

Vesicular tethers and SNAREs (soluble N-ethylmalemide-sensitive fusion attachment protein receptors) are two key protein components of the intracellular membrane-trafficking machinery. The conserved oligomeric Golgi (COG) complex has been implicated in the tethering of retrograde intra-Golgi vesicles. Here, using yeast two-hybrid and co-immunoprecipitation approaches, we show that three COG subunits, namely COG4, 6 and 8, are capable of interacting with defined Golgi SNAREs, namely STX5, STX6, STX16, GS27 and SNAP29. Comparative analysis of COG8-STX16 and COG4-STX5 interactions by a COG-based mitochondrial relocalization assay reveals that the COG8 and COG4 proteins initiate the formation of two different tethering platforms that can facilitate the redirection of two populations of Golgi transport intermediates to the mitochondrial vicinity. Our results uncover a role for COG sub-complexes in defining the specificity of vesicular sorting within the Golgi.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Complexos Multiproteicos/metabolismo , Proteínas SNARE/metabolismo , Animais , Biomarcadores/metabolismo , Chlorocebus aethiops , Proteínas de Fluorescência Verde/metabolismo , Células HeLa , Humanos , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Modelos Biológicos , Complexos Multiproteicos/ultraestrutura , Ligação Proteica , Estrutura Terciária de Proteína , Subunidades Proteicas/metabolismo , Transporte Proteico , Ratos , Proteínas Recombinantes de Fusão/metabolismo , Proteínas SNARE/química , Toxina Shiga/metabolismo , Vesículas Transportadoras/metabolismo , Vesículas Transportadoras/ultraestrutura , Células Vero
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA