Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Opt Express ; 28(25): 37514-37525, 2020 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-33379584

RESUMO

X-ray phase contrast nanotomography enables imaging of a wide range of samples with high spatial resolution in 3D. Near-field holography, as one of the major phase contrast techniques, is often implemented using X-ray optics such as Kirkpatrick-Baez mirrors, waveguides and compound refractive lenses. However, these optics are often tailor-made for a specific beamline and challenging to implement and align. Here, we present a near-field holography setup based on Fresnel zone plates which is fast and easy to align and provides a smooth illumination and flat field. The imaging quality of different types of Fresnel zone plates is compared in terms of the flat-field quality, the achievable resolution and exposure efficiency i.e. the photons arriving at the detector. Overall, this setup is capable of imaging different types of samples at high spatial resolution of below 100 nm in 3D with access to the quantitative phase information.

2.
Artigo em Inglês | MEDLINE | ID: mdl-25398577

RESUMO

Adding to previous efforts towards a better understanding of the remarkable diversity of spider mechanosensitive hair sensilla, this study examines hairs of Cupiennius salei most likely serving a proprioreceptive function. At the tibia-metatarsus joint of all walking legs, there are two opposing groups of hairs ventrally on the tibia (20 hairs) and metatarsus (75 hairs), respectively. These hairs deflect each other when the joint flexes during locomotion, reversibly interlocking by microtrichs on their hair shafts. The torque resisting the hair deflection into the direction of natural stimulation is smaller by up to two powers of ten than that for the other directions. The torsional restoring constant S of the hair suspension is about 10(-10) Nm rad(-1) in the preferred direction, up to a hair deflection angle of 30° (mean of natural deflection angles). Joint movements were imposed in ranges and at rates measured in walking spiders and sensory action potentials recorded. Within the natural step frequencies (0.3-3 Hz) the rate of action potentials follows the velocity of hair deflection. All findings point to the morphological, mechanical, and physiological adaptedness of the joint hair sensilla to their proprioreceptive stimulation during locomotion.


Assuntos
Adaptação Fisiológica , Locomoção/fisiologia , Propriocepção/fisiologia , Sensilas/fisiologia , Aranhas/fisiologia , Potenciais de Ação , Animais , Fenômenos Biomecânicos , Articulações/fisiologia , Microeletrodos , Microscopia Eletrônica de Varredura , Estimulação Física , Sensilas/ultraestrutura , Limiar Sensorial , Aranhas/ultraestrutura , Torque
3.
J Exp Biol ; 217(Pt 19): 3535-44, 2014 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-25274325

RESUMO

Gluing can be a highly efficient mechanism of prey capture, as it should require less complex sensory-muscular feedback. Whereas it is well known in insects, this mechanism is much less studied in arachnids, except spiders. Soil-dwelling harvestmen (Opiliones, Nemastomatidae) bear drumstick-like glandular hairs (clavate setae) at their pedipalps, which were previously hypothesized to be sticky and used in prey capture. However, clear evidence for this was lacking to date. Using high-speed videography, we found that the harvestman Mitostoma chrysomelas was able to capture fast-moving springtails (Collembola) just by a slight touch of the pedipalp. Adhesion of single clavate setae increased proportionally with pull-off velocity, from 1 µN at 1 µm s(-1) up to 7 µN at 1 mm s(-1), which corresponds to the typical weight of springtails. Stretched glue droplets exhibited characteristics of a viscoelastic fluid forming beads-on-a-string morphology over time, similar to spider capture threads and the sticky tentacles of carnivorous plants. These analogies indicate that viscoelasticity is a highly efficient mechanism for prey capture, as it holds stronger the faster the struggling prey moves. Cryo-scanning electron microscopy of snap-frozen harvestmen with glued springtails revealed that the gluey secretions have a high affinity to wet the microstructured cuticle of collembolans, which was previously reported to be barely wettable for both polar and non-polar liquids. Glue droplets can be contaminated with the detached scaly setae of collembolans, which may represent a counter-adaptation against entrapment by the glue, similar to the scaly surfaces of Lepidoptera and Trichoptera (Insecta) facilitating escape from spider webs.


Assuntos
Adesivos/química , Aracnídeos/fisiologia , Comportamento Predatório/fisiologia , Animais , Artrópodes/ultraestrutura , Fenômenos Biomecânicos , Líquidos Corporais/química , Microscopia Crioeletrônica , Gravação em Vídeo , Viscosidade
4.
Commun Biol ; 6(1): 1232, 2023 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-38057422

RESUMO

To adhere their silk threads for the construction of webs and to fix the dragline, spiders produce attachment discs of piriform silk. Uniquely, the aquatic spider Argyroneta aquatica spends its entire life cycle underwater. Therefore, it has to glue its attachment discs to substrates underwater. Here we show that Argyroneta aquatica applies its thread anchors within an air layer around the spinnerets maintained by superhydrophobic setae. During spinning, symmetric movements of the spinnerets ensure retaining air in the contact area. The flat structure of the attachment discs is thought to facilitate fast curing of the piriform adhesive cement and improves the resistance against drag forces. Pull-off tests on draglines connected with attachment discs on different hydrophilic substrates point to dragline rupture as the failure mode. The Young´s modulus of the dragline (8.3 GPa) is within the range as in terrestrial spiders. The shown structural and behavioral adaptations can be the model for new artificial underwater gluing devices.


Assuntos
Seda , Aranhas , Animais , Movimento , Seda/química
5.
Commun Biol ; 4(1): 737, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34131288

RESUMO

For flying insects, stability is essential to maintain the orientation and direction of motion in flight. Flight instability is caused by a variety of factors, such as intended abrupt flight manoeuvres and unwanted environmental disturbances. Although wings play a key role in insect flight stability, little is known about their oscillatory behaviour. Here we present the first systematic study of insect wing damping. We show that different wing regions have almost identical damping properties. The mean damping ratio of fresh wings is noticeably higher than that previously thought. Flight muscles and hemolymph have almost no 'direct' influence on the wing damping. In contrast, the involvement of the wing hinge can significantly increase damping. We also show that although desiccation reduces the wing damping ratio, rehydration leads to full recovery of damping properties after desiccation. Hence, we expect hemolymph to influence the wing damping indirectly, by continuously hydrating the wing system.


Assuntos
Voo Animal/fisiologia , Odonatos/anatomia & histologia , Asas de Animais/anatomia & histologia , Animais , Odonatos/fisiologia , Asas de Animais/fisiologia
6.
Adv Mater ; 32(37): e2002758, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32743886

RESUMO

Wandering spiders climb vertically and walk upside-down on rough and smooth surfaces using a nanostructured attachment system on their feet. The spiders are assumed to adhere by intermolecular van der Waals forces between the adhesive structures and the substrate. The adhesive elements are arranged highly ordered on the hierarchically structured attachment hair (setae). While walking, it has been suggested that the spiders apply a shear force on their legs to increase friction. However, the detailed mechanical behavior of the hair's structures during attachment and detachment remains unknown. Here, gradients of the mechanical properties of the attachment hair on different length scales that have evolved to support attachment, stabilize adhesion in contact, and withstand high stress at detachment, examined by in situ experiments, are shown. Shearing helps to self-align the adhesive elements with the substrate. The study is anticipated to contribute to the development of optimized artificial dry adhesives.


Assuntos
Cabelo , Fenômenos Mecânicos , Aranhas/anatomia & histologia , Adesividade , Animais , Fenômenos Biomecânicos , Estresse Mecânico
7.
Artigo em Inglês | MEDLINE | ID: mdl-19760269

RESUMO

The metatarsal lyriform organ of the spider Cupiennius salei is a vibration detector consisting of 21 cuticular slits supplied by two sensory cells each, one ending in the outer and the other at the inner slit membrane. In search of functional differences between the two cell types due to differences in stimulus transmission, we analyzed (1) the adaptation of responses to electrical stimulation, (2) the thresholds for mechanical stimulation and (3) the representation of male courtship vibrations using intracellular recording and staining techniques. Single- and multi-spiking receptor neurons were found among both cell types, which showed high-pass filter characteristics. Below 100-Hz threshold, tarsal deflections were between 1 degrees and 10 degrees. At higher frequencies, they decreased down to values as small as 0.05 degrees, corresponding to 4.5-nm tarsal deflection in the most sensitive cases. Different slits in the organ and receptor cells with slow or fast adaptation did not differ in this regard. When stimulated with male courtship vibrations, both types of receptor cells again did not differ significantly regarding number of action potentials, latency and synchronization coefficients. Surprisingly, the differences in dendrite coupling were not reflected by the physiological responses of the two cell types innervating the slits.


Assuntos
Mecanorreceptores/fisiologia , Órgãos dos Sentidos/citologia , Células Receptoras Sensoriais/classificação , Células Receptoras Sensoriais/fisiologia , Aranhas/anatomia & histologia , Análise de Variância , Animais , Biofísica , Biotina/análogos & derivados , Biotina/metabolismo , Corte , Feminino , Masculino , Potenciais da Membrana/fisiologia , Técnicas de Patch-Clamp/métodos , Estimulação Física/métodos , Limiar Sensorial/fisiologia , Vibração
8.
Artigo em Inglês | MEDLINE | ID: mdl-19685059

RESUMO

Arachnid slit sensilla respond to minute strains in the exoskeleton. After having applied finite element (FE) analysis to simplified arrays of five straight slits (Hössl et al. J Comp Physiol A 193:445-459, 2007) we now present a computational study of the effects of more subtle natural variations in geometry, number and arrangement of slits on the slit face deformations. Our simulations show that even minor variations in these parameters can substantially influence a slit's directional response. Using white-light interferometric measurements of the surface deformations of a lyriform organ, it is shown that planar FE models are capable of predicting the principal characteristics of the mechanical responses. The magnitudes of the measured and calculated slit face deformations are in good agreement. At threshold, they measure between 1.7 and 43 nm. In a lyriform organ and a closely positioned loose group of slits, the detectable range of loads increases to approximately 3.5 times the range of the lyriform organ alone. Stress concentration factors (up to ca. 29) found in the vicinity of the slits were evaluated from the models. They are mitigated due to local thickening of the exocuticle and the arrangement of the chitinous microfibers that prevents the formation of cracks under physiological loading conditions.


Assuntos
Análise de Elementos Finitos , Mecanotransdução Celular , Modelos Biológicos , Órgãos dos Sentidos/fisiologia , Aranhas/fisiologia , Animais , Fenômenos Biomecânicos , Simulação por Computador , Extremidades , Feminino , Microscopia de Interferência , Órgãos dos Sentidos/anatomia & histologia , Limiar Sensorial , Aranhas/anatomia & histologia , Estresse Mecânico , Suporte de Carga
9.
Acta Biomater ; 92: 305-314, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31075517

RESUMO

Ctenoid scales protect the fish body against predators and other environmental impacts. At the same time, they allow for sufficient degree of flexibility to perform species-specific locomotion. The scales of the flatfish Solea solea were chosen to study the specific mechanical behavior and material properties of the ctenoid scales. Using scanning electron microscopy and micro-computed tomography, three-dimensional asymmetric structures of the stacked mineralized ctenial spines in the posterior field, which is a part of the scales exposed to the environment, were examined in detail. Nanoindentations on the surface of the ctenial spines indicated that the elastic modulus and hardness of these mineralized structures are about 14 GPa and 0.4 GPa, respectively. The spines appeared to be connected to each other by means of joint-like structures containing soft tissues. Bending tests showed that the ctenoid scales have two functional zones: a stiff supporting main body and an anisotropically deformable posterior field. While the stiff plate-like main body provides support for the whole scale, the deformable joint-like structures in the ctenial spines increase the deformability of the posterior field in downward bending. During upward bending, however, the spines prevent complete folding of the posterior field by an interlocking effect. STATEMENT OF SIGNIFICANCE: In contrast to the continuously mineralized cycloid scales, ctenoid scales combine two conflicting properties: They are hard to protect the body of fish against predators and other environmental impacts, yet flexible enough to allow for sufficient degree of body bendability for locomotion. To understand the structural background underlying this specific biomechanical feature, here we investigated the scales of the flatfish Solea solea. For the first time, we demonstrated the presence of joint-like structures within the scales, which increase scale deformability during downward bending, but prevent scale deformation during upward bending by interlocking. Our results shed lights on the material-structure-function relationships in ctenoid scales, as well as on their functional adaptations to the specific environment.


Assuntos
Escamas de Animais/fisiologia , Linguados/anatomia & histologia , Escamas de Animais/diagnóstico por imagem , Escamas de Animais/ultraestrutura , Animais , Fenômenos Biomecânicos , Nanotecnologia , Impressão Tridimensional , Microtomografia por Raio-X
10.
J R Soc Interface ; 16(150): 20180692, 2019 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-30958170

RESUMO

When sitting and walking, the feet of wandering spiders reversibly attach to many surfaces without the use of gluey secretions. Responsible for the spiders' dry adhesion are the hairy attachment pads that are built of specially shaped cuticular hairs (setae) equipped with approximately 1 µm wide and 20 nm thick plate-like contact elements (spatulae) facing the substrate. Using synchrotron-based scanning nanofocus X-ray diffraction methods, combining wide-angle X-ray diffraction/scattering and small-angle X-ray scattering, allowed substantial quantitative information to be gained about the structure and materials of these fibrous adhesive structures with 200 nm resolution. The fibre diffraction patterns showed the crystalline chitin chains oriented along the long axis of the attachment setae and increased intensity of the chitin signal dorsally within the seta shaft. The small-angle scattering signals clearly indicated an angular shift by approximately 80° of the microtrich structures that branch off the bulk hair shaft and end as the adhesive contact elements in the tip region of the seta. The results reveal the specific structural arrangement and distribution of the chitin fibres within the attachment hair's cuticle preventing material failure by tensile reinforcement and proper distribution of stresses that arise upon attachment and detachment.


Assuntos
Quitina/química , Cabelo , Sensilas , Aranhas , Animais , Cabelo/química , Cabelo/ultraestrutura , Espalhamento a Baixo Ângulo , Sensilas/química , Sensilas/ultraestrutura , Aranhas/química , Aranhas/ultraestrutura , Difração de Raios X
11.
ACS Appl Mater Interfaces ; 10(43): 37566-37574, 2018 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-30229647

RESUMO

A specific feature of fibrous surfaces is the dependence of their mechanical properties on the alignment of the fibers. Vertically aligned fibers enhance friction and adhesion, whereas horizontal fibers are known to act as a lubricant reducing the friction. Many plants form a specific fibrous mucilage cover around their seeds upon hydration. This mucilage consists of cellulose, hemicelluloses, and strongly hydrophilic pectins. We show that the controlled critical-point drying of hydrated seed mucilage of three exemplary seed mucilage-rich plant species results in the exposure of free-standing cellulose nanofibers with a very high aspect ratio and anchored to the seed surface. The structural dimensions of the cellulose nanofibers are similar to the vertically aligned carbon nanotubes and the contact elements in the adhesion system of the gecko that show an outstanding high dry friction and adhesion. Tribological experiments demonstrate very high average friction coefficients when sliding a smooth and stiff probe over the surface of such arrays of dry free-standing cellulose nanofibrils in the range from 1.4 to 1.8. The high friction values most likely arise from bending of the single cellulose fibers and their alignment with the counterpart surface in close contact. We suggest the potential of free-standing cellulose nanofibrils of plant seed mucilage as a natural and ecologically friendly material where high contact forces to surfaces in dry environments are desired.

12.
J R Soc Interface ; 4(17): 1135-43, 2007 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-17412676

RESUMO

Atomic force microscopy (AFM) and surface force spectroscopy were applied in live spiders to their joint pad material located distal of the metatarsal lyriform organs, which are highly sensitive vibration sensors. The surface topography of the material is sufficiently smooth to probe the local nanomechanical properties with nanometre elastic deflections. Nanoscale loads were applied in the proximad direction on the distal joint region simulating the natural stimulus situation. The force curves obtained indicate the presence of a soft, liquid-like epicuticular layer (20-40 nm thick) above the pad material, which has much higher stiffness. The Young modulus of the pad material is close to 15 MPa at low frequencies, but increases rapidly with increasing frequencies approximately above 30 Hz to approximately 70 MPa at 112 Hz. The adhesive forces drop sharply by about 40% in the same frequency range. The strong frequency dependence of the elastic modulus indicates the viscoelastic nature of the pad material, its glass transition temperature being close to room temperature (25 +/- 2 degrees C) and, therefore, to its maximized energy absorption from low-frequency mechanical stimuli. These viscoelastic properties of the cuticular pad are suggested to be at least partly responsible for the high-pass characteristics of the vibration sensor's physiological properties demonstrated earlier.


Assuntos
Extremidades/fisiologia , Tegumento Comum/fisiologia , Aranhas/fisiologia , Vibração , Animais , Elasticidade , Limiar Sensorial
13.
Sci Rep ; 7(1): 9750, 2017 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-28851950

RESUMO

The freshwater crustacean Daphnia is known for its ability to develop inducible morphological defences that thwart predators. These defences are developed only in the presence of predators and are realized as morphological shape alterations e.g. 'neckteeth' in D. pulex and 'crests' in D. longicephala. Both are discussed to hamper capture, handling or consumption by interfering with the predator's prey capture devices. Additionally, D. pulex and some other daphniids were found to armour-up and develop structural alterations resulting in increased carapace stiffness. We used scanning transmission electron microscopy (STEM) and confocal laser scanning microscopy (CLSM) to identify predator-induced structural and shape alterations. We found species specific structural changes accompanying the known shape alterations. The cuticle becomes highly laminated (i.e. an increased number of layers) in both species during predator exposure. Using nano- and micro-indentation as well as finite element analysis (FEA) we determined both: the structure's and shape's contribution to the carapace's mechanical resistance. From our results we conclude that only structural alterations are responsible for increased carapace stiffness, whereas shape alterations appear to pose handling difficulties during prey capture. Therefore, these defences act independently at different stages during predation.


Assuntos
Exoesqueleto/fisiologia , Fenômenos Biomecânicos , Daphnia/fisiologia , Exoesqueleto/anatomia & histologia , Animais , Daphnia/anatomia & histologia , Água Doce , Microscopia Confocal , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão
14.
R Soc Open Sci ; 3(4): 150700, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27152212

RESUMO

Azobenzene containing liquid crystal elastomers (LCEs) are among of the most prominent photoresponsive polymers due to their fast and reversible response to different light stimuli. To bring new functions into the present framework, novel modifications in bulk material morphology are required. Therefore, we produced azobenzene LCE free-standing films with different porosities. While the porosity provided macroscopic morphological changes, at the same time, it induced modifications in alignment of liquid crystal azobenzene units in the films. We found that a high porosity increased the photoresponse of the LCE in terms of bending angle with high significance. Moreover, the porous LCE films showed similar bending forces to those of pore-free LCE films.

15.
J Morphol ; 277(10): 1320-8, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27418246

RESUMO

Daphnia (Crustacea, Cladocera) are well known for their ability to form morphological adaptations to defend against predators. In addition to spines and helmets, the carapace itself is a protective structure encapsulating the main body, but not the head. It is formed by a double layer of the integument interconnected by small pillars and hemolymphatic space in between. A second function of the carapace is respiration, which is performed through its proximal integument. The interconnecting pillars were previously described as providing higher mechanical stability against compressive forces. Following this hypothesis, we analyzed the carapace structure of D. pulex using histochemistry in combination with light and electron microscopy. We found the distal integument of the carapace to be significantly thicker than the proximal. The pillars appear fibrous with slim waists and broad, sometimes branched bases where they meet the integument layers. The fibrous structure and the slim-waisted shape of the pillars indicate a high capacity for withstanding tensile rather than compressive forces. In conclusion they are more ligaments than pillars. Therefore, we measured the hemolymphatic gauge pressure in D. longicephala and indeed found the hemocoel to have a pressure above ambient. Our results offer a new mechanistic explanation of the high rigidity of the daphniid carapace, which is probably the result of a light-weight construction consisting of two integuments bound together by ligaments and inflated by a hydrostatic hyper-pressure in the hemocoel. J. Morphol. 277:1320-1328, 2016. © 2016 Wiley Periodicals, Inc.


Assuntos
Exoesqueleto/anatomia & histologia , Daphnia/anatomia & histologia , Resistência à Tração , Exoesqueleto/fisiologia , Exoesqueleto/ultraestrutura , Animais , Força Compressiva , Daphnia/fisiologia
16.
Interface Focus ; 5(4): 20150026, 2015 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-26464787

RESUMO

Previous research demonstrated that arrays of vertically aligned carbon nanotubes (VACNTs) exhibit strong frictional properties. Experiments indicated a strong decrease of the friction coefficient from the first to the second sliding cycle in repetitive measurements on the same VACNT spot, but stable values in consecutive cycles. VACNTs form clusters under shear applied during friction tests, and self-organization stabilizes the mechanical properties of the arrays. With increasing load in the range between 300 µN and 4 mN applied normally to the array surface during friction tests the size of the clusters increases, while the coefficient of friction decreases. To better understand the experimentally obtained results, we formulated and numerically studied a minimalistic model, which reproduces the main features of the system with a minimum of adjustable parameters. We calculate the van der Waals forces between the spherical friction probe and bunches of the arrays using the well-known Morse potential function to predict the number of clusters, their size, instantaneous and mean friction forces and the behaviour of the VACNTs during consecutive sliding cycles and at different normal loads. The data obtained by the model calculations coincide very well with the experimental data and can help in adapting VACNT arrays for biomimetic applications.

17.
Adv Mater ; 26(45): 7581-7, 2014 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-25220108

RESUMO

A catecholamine freestanding film is discovered to be spontaneously formed at the air-water interface, and the film has unique properties of robust surface adhesiveness, self-healing, and stimuli-responsive properties. The interfacial film-producing procedure is a simple single step containing polyamines and catechol(amine)s. It is found that oxygen-rich regions existing at an air-water interface greatly accelerate the catecholamine crosslinking reaction.


Assuntos
Ar , Catecolaminas/química , Água/química , Carbono/química , Módulo de Elasticidade , Fricção , Íons/química , Microscopia de Força Atômica , Microscopia Confocal , Microscopia Eletrônica de Varredura , Oxigênio/química , Poliaminas/química , Cloreto de Polivinila/química , Pressão , Silicones/química , Prata/química , Análise Espectral , Propriedades de Superfície
18.
J R Soc Interface ; 9(71): 1254-64, 2012 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-22031733

RESUMO

Scanning white light interferometry and micro-force measurements were applied to analyse stimulus transformation in strain sensors in the spider exoskeleton. Two compound or 'lyriform' organs consisting of arrays of closely neighbouring, roughly parallel sensory slits of different lengths were examined. Forces applied to the exoskeleton entail strains in the cuticle, which compress and thereby stimulate the individual slits of the lyriform organs. (i) For the proprioreceptive lyriform organ HS-8 close to the distal joint of the tibia, the compression of the slits at the sensory threshold was as small as 1.4 nm and hardly more than 30 nm, depending on the slit in the array. The corresponding stimulus forces were as small as 0.01 mN. The linearity of the loading curve seems reasonable considering the sensor's relatively narrow biological intensity range of operation. The slits' mechanical sensitivity (slit compression/force) ranged from 106 down to 13 nm mN(-1), and gradually decreased with decreasing slit length. (ii) Remarkably, in the vibration-sensitive lyriform organ HS-10 on the metatarsus, the loading curve was exponential. The organ is thus adapted to the detection of a wide range of vibration amplitudes, as they are found under natural conditions. The mechanical sensitivities of the two slits examined in this organ in detail differed roughly threefold (522 and 195 nm mN(-1)) in the biologically most relevant range, again reflecting stimulus range fractionation among the slits composing the array.


Assuntos
Interferometria/métodos , Mecanotransdução Celular/fisiologia , Modelos Biológicos , Órgãos dos Sentidos/fisiologia , Limiar Sensorial/fisiologia , Aranhas/fisiologia , Tato/fisiologia , Animais , Estresse Mecânico
19.
J R Soc Interface ; 6(37): 681-94, 2009 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-19091682

RESUMO

The micromechanical properties of spider air flow hair sensilla (trichobothria) were characterized with nanometre resolution using surface force spectroscopy (SFS) under conditions of different constant deflection angular velocities theta (rad s(-1)) for hairs 900-950 microm long prior to shortening for measurement purposes. In the range of angular velocities examined (4 x 10(-4) - 2.6 x 10(-1) rad s(-1)), the torque T (Nm) resisting hair motion and its time rate of change (Nm s(-1)) were found to vary with deflection velocity according to power functions. In this range of angular velocities, the motion of the hair is most accurately captured by a three-parameter solid model, which numerically describes the properties of the hair suspension. A fit of the three-parameter model (3p) to the experimental data yielded the two torsional restoring parameters, S(3p)=2.91 x 10(-11) Nm rad(-1) and =2.77 x 10(-11) Nm rad(-1) and the damping parameter R(3p)=1.46 x 10(-12) Nm s rad(-1). For angular velocities larger than 0.05 rad s(-1), which are common under natural conditions, a more accurate angular momentum equation was found to be given by a two-parameter Kelvin solid model. For this case, the multiple regression fit yielded S(2p)=4.89 x 10(-11) Nm rad(-1) and R(2p)=2.83 x 10(-14) Nm s rad(-1) for the model parameters. While the two-parameter model has been used extensively in earlier work primarily at high hair angular velocities, to correctly capture the motion of the hair at both low and high angular velocities it is necessary to employ the three-parameter model. It is suggested that the viscoelastic mechanical properties of the hair suspension work to promote the phasic response behaviour of the sensilla.


Assuntos
Movimentos do Ar , Mecanorreceptores/fisiologia , Modelos Teóricos , Aranhas/fisiologia , Animais , Fenômenos Biomecânicos , Elasticidade , Mecanorreceptores/ultraestrutura , Microscopia Eletrônica de Varredura , Análise Espectral , Viscosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA