Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Hum Mol Genet ; 29(23): 3793-3806, 2021 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-33331896

RESUMO

The Ras-Erk pathway is frequently overactivated in human tumors. Neurofibromatosis types 1 and 2 (NF1, NF2) are characterized by multiple tumors of Schwann cell origin. The NF1 tumor suppressor neurofibromin is a principal Ras-GAP accelerating Ras inactivation, whereas the NF2 tumor suppressor merlin is a scaffold protein coordinating multiple signaling pathways. We have previously reported that merlin interacts with Ras and p120RasGAP. Here, we show that merlin can also interact with the neurofibromin/Spred1 complex via merlin-binding sites present on both proteins. Further, merlin can directly bind to the Ras-binding domain (RBD) and the kinase domain (KiD) of Raf1. As the third component of the neurofibromin/Spred1 complex, merlin cannot increase the Ras-GAP activity; rather, it blocks Ras binding to Raf1 by functioning as a 'selective Ras barrier'. Merlin-deficient Schwann cells require the Ras-Erk pathway activity for proliferation. Accordingly, suppression of the Ras-Erk pathway likely contributes to merlin's tumor suppressor activity. Taken together, our results, and studies by others, support targeting or co-targeting of this pathway as a therapy for NF2 inactivation-related tumors.


Assuntos
MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Neurofibromina 1/metabolismo , Neurofibromina 2/metabolismo , Proteínas Repressoras/metabolismo , Células de Schwann/patologia , Proteínas ras/metabolismo , Animais , Células Cultivadas , MAP Quinases Reguladas por Sinal Extracelular/genética , Neurofibromina 1/genética , Neurofibromina 2/genética , Ratos , Proteínas Repressoras/genética , Células de Schwann/metabolismo , Proteínas ras/genética
2.
Glia ; 70(12): 2309-2329, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35929192

RESUMO

Astrocytes are increasingly being recognized as contributors to physiological brain function and behavior. Astrocytes engage in glia-synaptic interactions through peripheral astrocyte processes, thus modulating synaptic signaling, for example, by handling glutamate removal from the synaptic cleft and (re)provision to axonal terminals. Peripheral astrocyte processes are ultrafine membrane protrusions rich in the membrane-to-actin cytoskeleton linker Ezrin, an essential component of in vitro filopodia formation and in vivo peripheral astrocyte process motility. Consequently, it has been postulated that Ezrin significantly contributes to neurodevelopment as well as astrocyte functions within the adult brain. However, while Ezrin has been studied in vitro within cultured primary astrocytes, in vivo studies on the role of Ezrin in astrocytes remain to be conducted and consequences of its depletion to be studied. Here, we investigated consequences of Ezrin deletion in the mouse brain starting from early neuronal specification. While Ezrin knockout did not impact prenatal cerebral cortex development, behavioral phenotyping depicted reduced exploratory behavior. Starting with postnatal appearance of glia cells, Ezrin was verified to remain predominantly expressed in astrocytes. Proteome analysis of Ezrin deficient astrocytes revealed alterations in glutamate and ion homeostasis, metabolism and cell morphology - important processes for synaptic signal transmission. Notably, Ezrin deletion in astrocytes provoked (GFAP) glial fibrillary acidic protein upregulation - a marker of astrocyte activation and reactive astrogliosis. However, this spontaneous, reactive astrogliosis exhibited proteome changes distinct from ischemic-induced reactive astrogliosis. Moreover, in experimental ischemic stroke, Ezrin knockout mice displayed reduced infarct volume, indicating a protective effect of the Ezrin deletion-induced changes and astrogliosis.


Assuntos
Astrócitos , Gliose , Animais , Astrócitos/metabolismo , Proteínas do Citoesqueleto , Feminino , Proteína Glial Fibrilar Ácida/metabolismo , Gliose/metabolismo , Ácido Glutâmico/metabolismo , Camundongos , Camundongos Knockout , Fenótipo , Gravidez , Proteoma/metabolismo , Regulação para Cima
3.
Proc Natl Acad Sci U S A ; 110(8): 3113-8, 2013 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-23359715

RESUMO

Dynamic epigenetic modifications play a key role in mediating the expression of genes required for neuronal development. We previously identified nitric oxide (NO) as a signaling molecule that mediates S-nitrosylation of histone deacetylase 2 (HDAC2) and epigenetic changes in neurons. Here, we show that HDAC2 nitrosylation regulates neuronal radial migration during cortical development. Bead-array analysis performed in the developing cortex revealed that brahma (Brm), a subunit of the ATP-dependent chromatin-remodeling complex BRG/brahma-associated factor, is one of the genes regulated by S-nitrosylation of HDAC2. In the cortex, expression of a mutant form of HDAC2 that cannot be nitrosylated dramatically inhibits Brm expression. Our study identifies NO and HDAC2 nitrosylation as part of a signaling pathway that regulates cortical development and the expression of Brm in neurons.


Assuntos
Movimento Celular , Montagem e Desmontagem da Cromatina , Histona Desacetilase 2/metabolismo , Neurônios/citologia , Óxido Nítrico/metabolismo , Fatores de Transcrição/metabolismo , Animais , Separação Celular , Córtex Cerebral/citologia , Córtex Cerebral/metabolismo , Eletroporação , Feminino , Citometria de Fluxo , Camundongos , Gravidez , Transdução de Sinais
4.
Proc Natl Acad Sci U S A ; 110(51): 20587-92, 2013 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-24297905

RESUMO

Receptor tyrosine kinases participate in several signaling pathways through small G proteins such as Ras (rat sarcoma). An important component in the activation of these G proteins is Son of sevenless (SOS), which catalyzes the nucleotide exchange on Ras. For optimal activity, a second Ras molecule acts as an allosteric activator by binding to a second Ras-binding site within SOS. This allosteric Ras-binding site is blocked by autoinhibitory domains of SOS. We have reported recently that Ras activation also requires the actin-binding proteins ezrin, radixin, and moesin. Here we report the mechanism by which ezrin modulates SOS activity and thereby Ras activation. Active ezrin enhances Ras/MAPK signaling and interacts with both SOS and Ras in vivo and in vitro. Moreover, in vitro kinetic assays with recombinant proteins show that ezrin also is important for the activity of SOS itself. Ezrin interacts with GDP-Ras and with the Dbl homology (DH)/pleckstrin homology (PH) domains of SOS, bringing GDP-Ras to the proximity of the allosteric site of SOS. These actions of ezrin are antagonized by the neurofibromatosis type 2 tumor-suppressor protein merlin. We propose an additional essential step in SOS/Ras control that is relevant for human cancer as well as all physiological processes involving Ras.


Assuntos
Proteínas do Citoesqueleto/metabolismo , Guanosina Difosfato/metabolismo , Sistema de Sinalização das MAP Quinases , Neurofibromina 2/metabolismo , Proteína Oncogênica p21(ras)/metabolismo , Proteínas Son Of Sevenless/metabolismo , Animais , Proteínas do Citoesqueleto/genética , Guanosina Difosfato/genética , Humanos , Camundongos , Células NIH 3T3 , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Neurofibromina 2/genética , Proteína Oncogênica p21(ras)/genética , Proteínas Son Of Sevenless/genética
5.
Nat Neurosci ; 16(4): 426-33, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23455610

RESUMO

The autosomal dominant disorder neurofibromatosis type 2 (NF2) is a hereditary tumor syndrome caused by inactivation of the NF2 tumor suppressor gene, encoding merlin. Apart from tumors affecting the peripheral and central nervous systems, most NF2 patients develop peripheral neuropathies. This peripheral nerve disease can occur in the absence of nerve-damaging tumors, suggesting an etiology that is independent of gross tumor burden. We discovered that merlin isoform 2 (merlin-iso2) has a specific function in maintaining axonal integrity and propose that reduced axonal NF2 gene dosage leads to NF2-associated polyneuropathy. We identified a merlin-iso2-dependent complex that promotes activation of the GTPase RhoA, enabling downstream Rho-associated kinase to promote neurofilament heavy chain phosphorylation. Merlin-iso2-deficient mice exhibited impaired locomotor capacities, delayed sensory reactions and electrophysiological signs of axonal neuropathy. Sciatic nerves from these mice and sural nerve biopsies from NF2 patients revealed reduced phosphorylation of the neurofilament H subunit, decreased interfilament spacings and irregularly shaped axons.


Assuntos
Neurofibromatose 2/metabolismo , Neurofibromina 2/fisiologia , Polineuropatias/metabolismo , Adulto , Sequência de Aminoácidos , Animais , Animais Recém-Nascidos , Linhagem Celular Tumoral , Células Cultivadas , Feminino , Gânglios Espinais/metabolismo , Gânglios Espinais/patologia , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Dados de Sequência Molecular , Neurofibromatose 2/genética , Neurofibromatose 2/patologia , Neurofibromina 2/genética , Fosforilação/fisiologia , Polineuropatias/genética , Polineuropatias/patologia , Gravidez , Isoformas de Proteínas/genética , Isoformas de Proteínas/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA