Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Development ; 141(20): 3922-33, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25252943

RESUMO

We describe the identification of zyxin as a regulator of synapse maintenance in mechanosensory neurons in C. elegans. zyx-1 mutants lacked PLM mechanosensory synapses as adult animals. However, most PLM synapses initially formed during development but were subsequently lost as the animals developed. Vertebrate zyxin regulates cytoskeletal responses to mechanical stress in culture. Our work provides in vivo evidence in support of such a role for zyxin. In particular, zyx-1 mutant synaptogenesis phenotypes were suppressed by disrupting locomotion of the mutant animals, suggesting that zyx-1 protects mechanosensory synapses from locomotion-induced forces. In cultured cells, zyxin is recruited to focal adhesions and stress fibers via C-terminal LIM domains and modulates cytoskeletal organization via the N-terminal domain. The synapse-stabilizing activity was mediated by a short isoform of ZYX-1 containing only the LIM domains. Consistent with this notion, PLM synaptogenesis was independent of α-actinin and ENA-VASP, both of which bind to the N-terminal domain of zyxin. Our results demonstrate that the LIM domain moiety of zyxin functions autonomously to mediate responses to mechanical stress and provide in vivo evidence for a role of zyxin in neuronal development.


Assuntos
Proteínas de Caenorhabditis elegans/fisiologia , Caenorhabditis elegans/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Sinapses/fisiologia , Zixina/fisiologia , Actinina/metabolismo , Animais , Animais Geneticamente Modificados , Axônios/metabolismo , Proteínas de Transporte/química , Citoesqueleto/metabolismo , Adesões Focais/metabolismo , Movimento , Mutação , Neurônios/metabolismo , Fenótipo , Fosfoproteínas/química , Isoformas de Proteínas/fisiologia , Estrutura Terciária de Proteína , Estresse Mecânico
2.
PLoS Genet ; 10(10): e1004644, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25329901

RESUMO

Axonal transport of synaptic vesicles (SVs) is a KIF1A/UNC-104 mediated process critical for synapse development and maintenance yet little is known of how SV transport is regulated. Using C. elegans as an in vivo model, we identified SAM-4 as a novel conserved vesicular component regulating SV transport. Processivity, but not velocity, of SV transport was reduced in sam-4 mutants. sam-4 displayed strong genetic interactions with mutations in the cargo binding but not the motor domain of unc-104. Gain-of-function mutations in the unc-104 motor domain, identified in this study, suppress the sam-4 defects by increasing processivity of the SV transport. Genetic analyses suggest that SAM-4, SYD-2/liprin-α and the KIF1A/UNC-104 motor function in the same pathway to regulate SV transport. Our data support a model in which the SV protein SAM-4 regulates the processivity of SV transport.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Proteínas de Membrana/metabolismo , Vesículas Sinápticas/metabolismo , Animais , Animais Geneticamente Modificados , Transporte Axonal/genética , Sítios de Ligação , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Peptídeos e Proteínas de Sinalização Intercelular , Proteínas de Membrana/genética , Mutação , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neuritos/metabolismo , Neurônios/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo
3.
Development ; 138(1): 87-96, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21115607

RESUMO

Little is known about transcriptional control of neurite branching or presynaptic differentiation, events that occur relatively late in neuronal development. Using the Caenorhabditis elegans mechanosensory circuit as an in vivo model, we show that SAM-10, an ortholog of mammalian single-stranded DNA-binding protein (SSDP), functions cell-autonomously in the nucleus to regulate synaptic differentiation, as well as positioning of, a single neurite branch. PLM mechanosensory neurons in sam-10 mutants exhibit abnormal placement of the neurite branch point, and defective synaptogenesis, characterized by an overextended synaptic varicosity, underdeveloped synaptic morphology and disrupted colocalization of active zone and synaptic vesicles. SAM-10 functions coordinately with Lim domain-binding protein 1 (LDB-1), demonstrated by our observations that: (1) mutations in either gene show similar defects in PLM neurons; and (2) LDB-1 is required for SAM-10 nuclear localization. SAM-10 regulates PLM synaptic differentiation by suppressing transcription of prk-2, which encodes an ortholog of the mammalian Pim kinase family. PRK-2-mediated activities of SAM-10 are specifically involved in PLM synaptic differentiation, but not other sam-10 phenotypes such as neurite branching. Thus, these data reveal a novel transcriptional signaling pathway that regulates neuronal specification of neurite branching and presynaptic differentiation.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/embriologia , Diferenciação Celular/fisiologia , Neuritos/metabolismo , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Diferenciação Celular/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Microscopia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sinapses/metabolismo
4.
J Neurosci ; 24(16): 3907-16, 2004 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-15102906

RESUMO

We describe Caenorhabditis elegans dynein complex mutants, which misaccumulate synaptic proteins at the ends of neuronal processes. Ultrastructural analysis revealed irregularly sized vesicles that likely represent accumulation of cargo. We propose that synaptobrevin, synaptotagmin, and UNC-104 are specific cargoes of the dynein complex. Many cargoes link to dynein via interactions between dynactin and vesicle-associated spectrin. However, loss of spectrin results in only mild and occasional defects in synaptobrevin localization. Thus, the dynein-dynactin complex shows neuronal cargo selectivity without spectrin being a critical component of cargo binding. We observed parallels to progressive motor neuron disease symptoms in these animals. With age, neuronal misaccumulations increase in size and frequency; locomotion becomes progressively slower; and life span is shortened. These mutants provide a model to assess whether defects in transport of specific cargo mediate neuronal dysfunction.


Assuntos
Caenorhabditis elegans/genética , Proteínas de Ligação ao Cálcio , Citoplasma/metabolismo , Dineínas/genética , Neurônios/metabolismo , Envelhecimento/metabolismo , Animais , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Progressão da Doença , Complexo Dinactina , Dineínas/metabolismo , Locomoção/genética , Substâncias Macromoleculares , Glicoproteínas de Membrana/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Mutação , Proteínas do Tecido Nervoso/metabolismo , Doenças do Sistema Nervoso/genética , Doenças do Sistema Nervoso/metabolismo , Fenótipo , Transporte Proteico/genética , Transporte Proteico/fisiologia , Proteínas R-SNARE , Espectrina/genética , Taxa de Sobrevida , Vesículas Sinápticas/metabolismo , Vesículas Sinápticas/ultraestrutura , Sinaptotagminas
5.
J Comp Neurol ; 490(3): 209-19, 2005 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-16082680

RESUMO

Amyotrophic lateral sclerosis is a fatal paralytic disease that targets motor neurons, leading to motor neuron death and widespread denervation atrophy of muscle. Previous electrophysiological data have shown that some motor axon branches attempt to compensate for loss of innervation, resulting in enlarged axonal arbors. Recent histological assays have shown that during the course of the disease some axonal branches die back. We thus asked whether the two types of behavior, die-back and compensatory growth, occur in different branches of single neurons or, alternatively, whether entire motor units are of one type or the other. We used high-resolution in vivo imaging in the G93A SOD1 mouse model, bred to express transgenic yellow fluorescent protein in all or subsets of motor neurons. Time-lapse imaging showed that degenerative axon branches are easily distinguished from those undergoing compensatory reinnervation, showing fragmentation of terminal branches but sparing of the more proximal axon. Reconstruction of entire motor units showed that some were abnormally large. Surprisingly, these large motor units contained few if any degenerating synapses. Some small motor units, however, no longer possessed any neuromuscular contacts at all, giving the appearance of "winter trees." Thus, degenerative versus regenerative changes are largely confined to distinct populations of neurons within the same motor pool. Identification of factors that protect "compensatory" motor neurons from degenerative changes may provide new targets for therapeutic intervention.


Assuntos
Esclerose Lateral Amiotrófica/patologia , Esclerose Lateral Amiotrófica/fisiopatologia , Neurônios Motores/patologia , Degeneração Neural/fisiopatologia , Recuperação de Função Fisiológica/fisiologia , Fatores Etários , Animais , Proteínas de Bactérias/genética , Modelos Animais de Doenças , Proteínas Luminescentes/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Modelos Biológicos , Denervação Muscular/métodos , Degeneração Neural/patologia , Junção Neuromuscular/metabolismo , Junção Neuromuscular/fisiopatologia , Receptores Colinérgicos/metabolismo , Superóxido Dismutase/genética , Antígenos Thy-1/genética , Fatores de Tempo
6.
Development ; 130(9): 1771-81, 2003 May.
Artigo em Inglês | MEDLINE | ID: mdl-12642483

RESUMO

Neuroendocrine cells are specialized to produce, maintain and release large stores of secretory peptides. We show that the Drosophila dimmed/Mist1 bHLH gene confers such a pro-secretory phenotype on neuroendocrine cells. dimmed is expressed selectively in central and peripheral neuroendocrine cells. In dimmed mutants, these cells survive, and adopt normal cell fates and morphology. However, they display greatly diminished levels of secretory peptide mRNAs, and of diverse peptides and proteins destined for regulated secretion. Secretory peptide levels are lowered even in the presence of artificially high secretory peptide mRNA levels. In addition, overexpression of dimmed in a wild-type background produces a complimentary phenotype: an increase in secretory peptide levels by neuroendocrine cells, and an increase in the number of cells displaying a neuroendocrine phenotype. We propose that dimmed encodes an integral component of a novel mechanism by which diverse neuroendocrine lineages differentiate and maintain the pro-secretory state.


Assuntos
Diferenciação Celular/fisiologia , Proteínas de Drosophila , Drosophila/embriologia , Sistemas Neurossecretores/embriologia , Fatores de Transcrição/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Sequências Hélice-Alça-Hélice , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA