Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
PLoS Pathog ; 11(3): e1004735, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25799153

RESUMO

Virulence of the nosocomial pathogen Staphylococcus epidermidis is crucially linked to formation of adherent biofilms on artificial surfaces. Biofilm assembly is significantly fostered by production of a bacteria derived extracellular matrix. However, the matrix composition, spatial organization, and relevance of specific molecular interactions for integration of bacterial cells into the multilayered biofilm community are not fully understood. Here we report on the function of novel 18 kDa Small basic protein (Sbp) that was isolated from S. epidermidis biofilm matrix preparations by an affinity chromatographic approach. Sbp accumulates within the biofilm matrix, being preferentially deposited at the biofilm-substratum interface. Analysis of Sbp-negative S. epidermidis mutants demonstrated the importance of Sbp for sustained colonization of abiotic surfaces, but also epithelial cells. In addition, Sbp promotes assembly of S. epidermidis cell aggregates and establishment of multilayered biofilms by influencing polysaccharide intercellular-adhesin (PIA) and accumulation associated protein (Aap) mediated intercellular aggregation. While inactivation of Sbp indirectly resulted in reduced PIA-synthesis and biofilm formation, Sbp serves as an essential ligand during Aap domain-B mediated biofilm accumulation. Our data support the conclusion that Sbp serves as an S. epidermidis biofilm scaffold protein that significantly contributes to key steps of surface colonization. Sbp-negative S. epidermidis mutants showed no attenuated virulence in a mouse catheter infection model. Nevertheless, the high prevalence of sbp in commensal and invasive S. epidermidis populations suggests that Sbp plays a significant role as a co-factor during both multi-factorial commensal colonization and infection of artificial surfaces.


Assuntos
Aderência Bacteriana/fisiologia , Biofilmes/crescimento & desenvolvimento , Proteínas Periplásmicas de Ligação/metabolismo , Staphylococcus epidermidis/fisiologia , Animais , Camundongos , Proteínas Periplásmicas de Ligação/genética
2.
Infect Immun ; 83(1): 214-26, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25332125

RESUMO

Biofilm formation is the primary virulence factor of Staphylococcus epidermidis. S. epidermidis biofilms preferentially form on abiotic surfaces and may contain multiple matrix components, including proteins such as accumulation-associated protein (Aap). Following proteolytic cleavage of the A domain, which has been shown to enhance binding to host cells, B domain homotypic interactions support cell accumulation and biofilm formation. To further define the contribution of Aap to biofilm formation and infection, we constructed an aap allelic replacement mutant and an icaADBC aap double mutant. When subjected to fluid shear, strains deficient in Aap production produced significantly less biofilm than Aap-positive strains. To examine the in vivo relevance of our findings, we modified our previously described rat jugular catheter model and validated the importance of immunosuppression and the presence of a foreign body to the establishment of infection. The use of our allelic replacement mutants in the model revealed a significant decrease in bacterial recovery from the catheter and the blood in the absence of Aap, regardless of the production of polysaccharide intercellular adhesin (PIA), a well-characterized, robust matrix molecule. Complementation of the aap mutant with full-length Aap (containing the A domain), but not the B domain alone, increased initial attachment to microtiter plates, as did in trans expression of the A domain in adhesion-deficient Staphylococcus carnosus. These results demonstrate Aap contributes to S. epidermidis infection, which may in part be due to A domain-mediated attachment to abiotic surfaces.


Assuntos
Proteínas de Bactérias/metabolismo , Biofilmes/crescimento & desenvolvimento , Infecções Relacionadas a Cateter/microbiologia , Infecções Estafilocócicas/microbiologia , Staphylococcus epidermidis/fisiologia , Fatores de Virulência/metabolismo , Animais , Proteínas de Bactérias/genética , Modelos Animais de Doenças , Deleção de Genes , Teste de Complementação Genética , Masculino , Dados de Sequência Molecular , Ratos Sprague-Dawley , Análise de Sequência de DNA , Staphylococcus epidermidis/metabolismo , Fatores de Virulência/genética
3.
J Bacteriol ; 196(24): 4268-75, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25266380

RESUMO

The polysaccharide intercellular adhesin or the cell wall-anchored accumulation-associated protein (Aap) mediates cellular accumulation during Staphylococcus epidermidis biofilm maturation. Mutation of sortase, which anchors up to 11 proteins (including Aap) to the cell wall, blocked biofilm development by the cerebrospinal fluid isolate CSF41498. Aap was implicated in this phenotype when Western blots and two-dimensional (2D) electrophoresis revealed increased levels of the protein in culture supernatants. Unexpectedly, reduced levels of primary attachment were associated with impaired biofilm formation by CSF41498 srtA and aap mutants. In contrast to previous studies, which implicated Aap proteolytic cleavage and, specifically, the Aap B domains in biofilm accumulation, the CSF41498 Aap protein was unprocessed. Furthermore, aap appeared to play a less important role in the biofilm phenotype of S. epidermidis 1457, in which the Aap protein is processed. Anti-Aap A-domain IgG inhibited primary attachment and biofilm formation in strain CSF41498 but not in strain 1457. The nucleotide sequences of the aap gene A-domain region and cleavage site in strains CSF41498 and 1457 were identical, implicating altered protease activity in the differential Aap processing results in the two strains. These data reveal a new role for the A domain of unprocessed Aap in the attachment phase of biofilm formation and suggest that extracellular protease activity can influence whether Aap contributes to the attachment or accumulation phases of the S. epidermidis biofilm phenotype.


Assuntos
Proteínas de Bactérias/metabolismo , Biofilmes/crescimento & desenvolvimento , Staphylococcus epidermidis/fisiologia , Proteínas de Bactérias/genética , Western Blotting , Líquido Cefalorraquidiano/microbiologia , Eletroforese em Gel Bidimensional , Humanos , Mutação , Fenótipo , Staphylococcus epidermidis/genética , Staphylococcus epidermidis/isolamento & purificação , Staphylococcus epidermidis/metabolismo
4.
J Bacteriol ; 196(19): 3482-93, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25070736

RESUMO

Staphylococcus epidermidis is an opportunistic pathogen that is one of the leading causes of medical device infections. Global regulators like the agr quorum-sensing system in this pathogen have received a limited amount of attention, leaving important questions unanswered. There are three agr types in S. epidermidis strains, but only one of the autoinducing peptide (AIP) signals has been identified (AIP-I), and cross talk between agr systems has not been tested. We structurally characterized all three AIP types using mass spectrometry and discovered that the AIP-II and AIP-III signals are 12 residues in length, making them the largest staphylococcal AIPs identified to date. S. epidermidis agr reporter strains were developed for each system, and we determined that cross-inhibitory interactions occur between the agr type I and II systems and between the agr type I and III systems. In contrast, no cross talk was observed between the type II and III systems. To further understand the outputs of the S. epidermidis agr system, an RNAIII mutant was constructed, and microarray studies revealed that exoenzymes (Ecp protease and Geh lipase) and low-molecular-weight toxins were downregulated in the mutant. Follow-up analysis of Ecp confirmed the RNAIII is required to induce protease activity and that agr cross talk modulates Ecp activity in a manner that mirrors the agr reporter results. Finally, we demonstrated that the agr system enhances skin colonization by S. epidermidis using a porcine model. This work expands our knowledge of S. epidermidis agr system function and will aid future studies on cell-cell communication in this important opportunistic pathogen.


Assuntos
Proteínas de Bactérias/metabolismo , Peptídeos Cíclicos/metabolismo , Percepção de Quorum , Infecções Estafilocócicas/microbiologia , Staphylococcus epidermidis/fisiologia , Animais , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Humanos , Peptídeos Cíclicos/genética , Staphylococcus epidermidis/genética , Staphylococcus epidermidis/crescimento & desenvolvimento , Suínos
5.
PLoS Pathog ; 8(4): e1002626, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22496652

RESUMO

Clinical isolates of Staphylococcus aureus can express biofilm phenotypes promoted by the major cell wall autolysin and the fibronectin-binding proteins or the icaADBC-encoded polysaccharide intercellular adhesin/poly-N-acetylglucosamine (PIA/PNAG). Biofilm production in methicillin-susceptible S. aureus (MSSA) strains is typically dependent on PIA/PNAG whereas methicillin-resistant isolates express an Atl/FnBP-mediated biofilm phenotype suggesting a relationship between susceptibility to ß-lactam antibiotics and biofilm. By introducing the methicillin resistance gene mecA into the PNAG-producing laboratory strain 8325-4 we generated a heterogeneously resistant (HeR) strain, from which a homogeneous, high-level resistant (HoR) derivative was isolated following exposure to oxacillin. The HoR phenotype was associated with a R602H substitution in the DHHA1 domain of GdpP, a recently identified c-di-AMP phosphodiesterase with roles in resistance/tolerance to ß-lactam antibiotics and cell envelope stress. Transcription of icaADBC and PNAG production were impaired in the 8325-4 HoR derivative, which instead produced a proteinaceous biofilm that was significantly inhibited by antibodies against the mecA-encoded penicillin binding protein 2a (PBP2a). Conversely excision of the SCCmec element in the MRSA strain BH1CC resulted in oxacillin susceptibility and reduced biofilm production, both of which were complemented by mecA alone. Transcriptional activity of the accessory gene regulator locus was also repressed in the 8325-4 HoR strain, which in turn was accompanied by reduced protease production and significantly reduced virulence in a mouse model of device infection. Thus, homogeneous methicillin resistance has the potential to affect agr- and icaADBC-mediated phenotypes, including altered biofilm expression and virulence, which together are consistent with the adaptation of healthcare-associated MRSA strains to the antibiotic-rich hospital environment in which they are frequently responsible for device-related infections in immuno-compromised patients.


Assuntos
Biofilmes/crescimento & desenvolvimento , Contaminação de Equipamentos , Resistência a Meticilina/fisiologia , Staphylococcus aureus Resistente à Meticilina/metabolismo , Staphylococcus aureus Resistente à Meticilina/patogenicidade , Acetilglucosamina/genética , Acetilglucosamina/metabolismo , Adesinas Bacterianas/genética , Adesinas Bacterianas/metabolismo , Animais , Antibacterianos/farmacologia , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Regulação Bacteriana da Expressão Gênica/fisiologia , Humanos , Masculino , Resistência a Meticilina/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/genética , Camundongos , N-Acetil-Muramil-L-Alanina Amidase/genética , N-Acetil-Muramil-L-Alanina Amidase/metabolismo , Oxacilina/farmacologia , Proteínas de Ligação às Penicilinas/genética , Proteínas de Ligação às Penicilinas/metabolismo , Polissacarídeos Bacterianos/genética , Polissacarídeos Bacterianos/metabolismo
6.
mSphere ; 1(5)2016.
Artigo em Inglês | MEDLINE | ID: mdl-27747298

RESUMO

Staphylococcus epidermidis is a leading cause of hospital-associated infections, including those of intravascular catheters, cerebrospinal fluid shunts, and orthopedic implants. Multiple biofilm matrix molecules with heterogeneous characteristics have been identified, including proteinaceous, polysaccharide, and nucleic acid factors. Two of the best-studied components in S. epidermidis include accumulation-associated protein (Aap) and polysaccharide intercellular adhesin (PIA), produced by the enzymatic products of the icaADBC operon. Biofilm composition varies by strain as well as environmental conditions, and strains producing PIA-mediated biofilms are more robust. Clinically, biofilm-mediated infections occur in a variety of anatomical sites with diverse physiological properties. To test the hypothesis that matrix composition exhibits niche specificity, biofilm-related genetic and physical properties were compared between S. epidermidis strains isolated from high-shear and low-shear environments. Among a collection of 105 clinical strains, significantly more isolates from high-shear environments carried the icaADBC operon than did those from low-shear settings (43.9% versus 22.9%, P < 0.05), while there was no significant difference in the presence of aap (77.2% versus 75.0%, P > 0.05). Additionally, a significantly greater number of high-shear isolates were capable of forming biofilm in vitro in a microtiter assay (82.5% versus 45.8%, P < 0.0001). However, even among high-shear clinical isolates, less than half contained the icaADBC locus; therefore, we selected for ica-negative variants with increased attachment to abiotic surfaces to examine PIA-independent biofilm mechanisms. Sequencing of selected variants identified substitutions capable of enhancing biofilm formation in multiple genes, further highlighting the heterogeneity of S. epidermidis biofilm molecules and mechanisms. IMPORTANCEStaphylococcus epidermidis is a leading cause of infections related to biomaterials, mostly due to their ability to form biofilm. Biofilm accumulation mechanisms vary, including those that are dependent on specific proteins, environmental DNA (eDNA), or polysaccharide intercellular adhesin (PIA). We found that those isolates obtained from high-shear environments, such as the lumen of a catheter, are more likely to produce PIA-mediated biofilms than those isolates obtained from a low-shear biomaterial-related infection. This suggests that PIA functions as a mechanism that is protective against shear flow. Finally, we performed selection experiments documenting the heterogeneity of biofilm accumulation molecules that function in the absence of PIA, further documenting the biofilm-forming potential of S. epidermidis.

7.
Methods Mol Biol ; 1106: 199-206, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24222469

RESUMO

Staphylococcus epidermidis is now recognized as the primary cause of nosocomial catheter-mediated infections. Bacteria may be introduced exogenously via contamination of the catheter hub or insertion site and endogenously from sepsis. The in vivo model described in this chapter examines the infection resulting from hematogenous seeding of jugular vein catheters.


Assuntos
Biofilmes , Infecções Relacionadas a Cateter/microbiologia , Cateteres de Demora/microbiologia , Infecções Estafilocócicas/microbiologia , Staphylococcus epidermidis/fisiologia , Animais , Cateterismo Venoso Central , Modelos Animais de Doenças , Humanos , Veias Jugulares/microbiologia , Ratos
8.
Methods Mol Biol ; 1106: 173-81, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24222466

RESUMO

Animal models are invaluable tools for translational research, allowing investigators to recapitulate observed clinical scenarios within the laboratory that share attributes with human disease. Here, we describe a mouse model of post-arthroplasty Staphylococcus epidermidis joint infection which mimics human disease and may be utilized to explore the complex series of events during staphylococcal implant-associated infections by identifying key immunological, bacterial, and/or therapeutic mechanisms relevant to these persistent infections.


Assuntos
Biofilmes , Infecções Relacionadas à Prótese/microbiologia , Infecções Estafilocócicas/microbiologia , Staphylococcus epidermidis/fisiologia , Animais , Artroplastia , Modelos Animais de Doenças , Humanos , Articulação do Joelho/microbiologia , Articulação do Joelho/cirurgia , Prótese do Joelho/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Falha de Prótese
9.
mBio ; 4(4)2013 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-23963176

RESUMO

UNLABELLED: A recent controversial hypothesis suggested that the bactericidal action of antibiotics is due to the generation of endogenous reactive oxygen species (ROS), a process requiring the citric acid cycle (tricarboxylic acid [TCA] cycle). To test this hypothesis, we assessed the ability of oxacillin to induce ROS production and cell death in Staphylococcus epidermidis strain 1457 and an isogenic citric acid cycle mutant. Our results confirm a contributory role for TCA-dependent ROS in enhancing susceptibility of S. epidermidis toward ß-lactam antibiotics and also revealed a propensity for clinical isolates to accumulate TCA cycle dysfunctions presumably as a way to tolerate these antibiotics. The increased protection from ß-lactam antibiotics could result from pleiotropic effects of a dysfunctional TCA cycle, including increased resistance to oxidative stress, reduced susceptibility to autolysis, and a more positively charged cell surface. IMPORTANCE: Staphylococcus epidermidis, a normal inhabitant of the human skin microflora, is the most common cause of indwelling medical device infections. In the present study, we analyzed 126 clinical S. epidermidis isolates and discovered that tricarboxylic acid (TCA) cycle dysfunctions are relatively common in the clinical environment. We determined that a dysfunctional TCA cycle enables S. epidermidis to resist oxidative stress and alter its cell surface properties, making it less susceptible to ß-lactam antibiotics.


Assuntos
Antibacterianos/farmacologia , Ciclo do Ácido Cítrico , Viabilidade Microbiana/efeitos dos fármacos , Staphylococcus epidermidis/efeitos dos fármacos , Staphylococcus epidermidis/metabolismo , beta-Lactamas/farmacologia , Humanos , Testes de Sensibilidade Microbiana , Oxacilina/farmacologia , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Staphylococcus epidermidis/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA