Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Anal Chem ; 90(15): 8856-8864, 2018 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-29944823

RESUMO

A method is described for high-resolution label-free molecular imaging of human bone tissue. To preserve the lipid content and the heterogeneous structure of osseous tissue, 4 µm thick human bone sections were prepared via cryoembedding and tape-assisted cryosectioning, circumventing the application of organic solvents and a decalcification step. A protocol for comparative mass spectrometry imaging (MSI) on the same section was established for initial analysis with time-of-flight secondary ion mass spectrometry (TOF-SIMS) at a lateral resolution of 10 µm to <500 nm, followed by atmospheric pressure scanning microprobe matrix-assisted laser desorption/ionization (AP-SMALDI) Orbitrap MSI at a lateral resolution of 10 µm. This procedure ultimately enabled MSI of lipids, providing the lateral localization of major lipid classes such as glycero-, glycerophospho-, and sphingolipids. Additionally, the applicability of the recently emerged Orbitrap-TOF-SIMS hybrid system was exemplarily examined and compared to the before-mentioned MSI methods.


Assuntos
Cabeça do Fêmur/química , Lipídeos/análise , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Espectrometria de Massa de Íon Secundário/métodos , Crioultramicrotomia/métodos , Humanos , Imagem Óptica/métodos
2.
Anal Bioanal Chem ; 409(18): 4425-4435, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28516281

RESUMO

Lipids have numerous important functions in the human body, as they form the cells' plasma membranes and play a key role in many disease states, presumably also in osteoporosis. Here, the fatty acid composition of the outer plasma membranes of cells differentiated into the osteogenic and adipogenic direction is studied with surface-sensitive time-of-flight secondary ion mass spectrometry (ToF-SIMS). For data evaluation, principal component analysis (PCA) is applied. Human (bone-derived) mesenchymal stromal cells (hMSCs) from an osteoporotic donor and a control donor are compared to reveal differences in the fatty acid composition of the membranes. The chemical information is correlated to staining and real-time quantitative polymerase chain reaction (rt-qPCR) results to provide insight into the gene expression of several differentiation markers on the RNA level. Adipogenic differentiation of hMSCs from a non-osteoporotic donor correlates with increased relative intensities of all fatty acids under investigation. After osteogenic differentiation of non-osteoporotic cells, the relative mass signal intensities of unsaturated fatty acids such as oleic and linoleic acids are increased. However, the osteoporotic cells show increased levels of palmitic acid in the plasma membrane after exposure to osteogenic differentiation conditions, which correlates to an immature differentiation state relative to non-osteoporotic osteogenic cells. This immature differentiation state is confirmed by increased early osteogenic differentiation factor Runx2 on RNA level and by less calcium mineralization spots seen in von Kossa staining and ToF-SIMS images. Graphical abstract Time-of-flight secondary ion mass spectrometry is applied to analyze the fatty acid composition of the outer plasma membranes of cells differentiated into the adipogenic and osteogenic direction. Cells from an osteoporotic and a control donor are compared to reveal differences due to differentiation and disease stage of the cells.


Assuntos
Osso e Ossos/citologia , Espectrometria de Massas/métodos , Células-Tronco Mesenquimais/fisiologia , Osteogênese/fisiologia , Osteoporose/patologia , Adipogenia , Diferenciação Celular , Humanos , Análise de Componente Principal , Reação em Cadeia da Polimerase em Tempo Real/métodos
3.
Biointerphases ; 13(3): 03B410, 2018 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-29490464

RESUMO

Within this study, the authors use human mesenchymal stem cells incubated with silver nanoparticles (AgNPs) as a model system to systematically investigate the advantages and drawbacks of the fast imaging delayed extraction mode for two-dimensional and three-dimensional (3D) analyses at the cellular level. The authors compare the delayed extraction mode with commonly employed measurement modes in terms of mass and lateral resolution, intensity, and dose density. Using the delayed extraction mode for single cell analysis, a high mass resolution up to 4000 at m/z = 184.08 combined with a lateral resolution up to 360 nm is achieved. Furthermore, the authors perform 3D analyses with Ar-clusters (10 keV) and O2+ (500 eV) as sputter species, combined with Bi3+ and delayed extraction for analysis. Cell compartments like the nucleus are visualized in 3D, whereas no realistic 3D reconstruction of intracellular AgNP is possible due to the different sputter rates of inorganic and organic cell materials. Furthermore, the authors show that the sputter yield of Ag increases with the decreasing Ar-cluster size, which might be an approach to converge the different sputter rates.


Assuntos
Imageamento Tridimensional/métodos , Células-Tronco Mesenquimais/química , Nanopartículas Metálicas/química , Prata/análise , Espectrometria de Massa de Íon Secundário/métodos , Células Cultivadas , Humanos , Análise de Célula Única/métodos
4.
Biointerphases ; 11(2): 02A313, 2016 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-26810048

RESUMO

In order to obtain comparable and reproducible results from time-of-flight secondary ion mass spectrometry (ToF-SIMS) analysis of biological cells, the influence of sample preparation and storage has to be carefully considered. It has been previously shown that the impact of the chosen preparation routine is crucial. In continuation of this work, the impact of storage needs to be addressed, as besides the fact that degradation will unavoidably take place, the effects of different storage procedures in combination with specific sample preparations remain largely unknown. Therefore, this work examines different wet (buffer, water, and alcohol) and dry (air-dried, freeze-dried, and critical-point-dried) storage procedures on human mesenchymal stem cell cultures. All cell samples were analyzed by ToF-SIMS immediately after preparation and after a storage period of 4 weeks. The obtained spectra were compared by principal component analysis with lipid- and amino acid-related signals known from the literature. In all dry storage procedures, notable degradation effects were observed, especially for lipid-, but also for amino acid-signal intensities. This leads to the conclusion that dried samples are to some extent easier to handle, yet the procedure is not the optimal storage solution. Degradation proceeds faster, which is possibly caused by oxidation reactions and cleaving enzymes that might still be active. Just as well, wet stored samples in alcohol struggle with decreased signal intensities from lipids and amino acids after storage. Compared to that, the wet stored samples in a buffered or pure aqueous environment revealed no degradation effects after 4 weeks. However, this storage bears a higher risk of fungi/bacterial contamination, as sterile conditions are typically not maintained. Thus, regular solution change is recommended for optimized storage conditions. Not directly exposing the samples to air, wet storage seems to minimize oxidation effects, and hence, buffer or water storage with regular renewal of the solution is recommended for short storage periods.


Assuntos
Células-Tronco Mesenquimais/química , Manejo de Espécimes/métodos , Espectrometria de Massa de Íon Secundário/métodos , Aminoácidos/análise , Células Cultivadas , Humanos , Lipídeos/análise
5.
Biointerphases ; 10(1): 019016, 2015 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-25791294

RESUMO

In ToF-SIMS analysis, the experimental outcome from cell experiments is to a great extent influenced by the sample preparation routine. In order to better judge this critical influence in the case of lipid analysis, a detailed comparison of different sample preparation routines is performed-aiming at an optimized preparation routine for systematic lipid imaging of cell cultures. For this purpose, human mesenchymal stem cells were analyzed: (a) as chemically fixed, (b) freeze-dried, and (c) frozen-hydrated. For chemical fixation, different fixatives, i.e., glutaraldehyde, paraformaldehyde, and a mixture of both, were tested with different postfixative handling procedures like storage in phosphate buffered saline, water or critical point drying. Furthermore, secondary lipid fixation via osmium tetroxide was taken into account and the effect of an ascending alcohol series with and without this secondary lipid fixation was evaluated. Concerning freeze-drying, three different postprocessing possibilities were examined. One can be considered as a pure cryofixation technique while the other two routes were based on chemical fixation. Cryofixation methods known from literature, i.e., freeze-fracturing and simple frozen-hydrated preparation, were also evaluated to complete the comparison of sample preparation techniques. Subsequent data evaluation of SIMS spectra in both, positive and negative, ion mode was performed via principal component analysis by use of peak sets representative for lipids. For freeze-fracturing, these experiments revealed poor reproducibility making this preparation route unsuitable for systematic investigations and statistic data evaluation. Freeze-drying after cryofixation showed improved reproducibility and well preserved lipid contents while the other freeze-drying procedures showed drawbacks in one of these criteria. In comparison, chemical fixation techniques via glutar- and/or paraformaldehyde proved most suitable in terms of reproducibility and preserved lipid contents, while alcohol and osmium treatment led to the extraction of lipids and are therefore not recommended.


Assuntos
Técnicas Citológicas/métodos , Lipídeos/análise , Células-Tronco Mesenquimais/química , Espectrometria de Massa de Íon Secundário/métodos , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA