Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Angiogenesis ; 27(1): 37-49, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37493987

RESUMO

Modern drug development increasingly requires comprehensive models that can be utilized in the earliest stages of compound and target discovery. Here we report a phenotypic screening exercise in a high-throughput Organ-on-a-Chip setup. We assessed the inhibitory effect of 1537 protein kinase inhibitors in an angiogenesis assay. Over 4000 micro-vessels were grown under perfusion flow in microfluidic chips, exposed to a cocktail of pro-angiogenic factors and subsequently exposed to the respective kinase inhibitors. Efficacy of compounds was evaluated by reduced angiogenic sprouting, whereas reduced integrity of the main micro-vessel was taken as a measure for toxicity. The screen yielded 53 hits with high anti-angiogenicity and low toxicity, of which 44 were previously unassociated with angiogenic pathways. This study demonstrates that Organ-on-a-Chip models can be screened in high numbers to identify novel compounds and targets. This will ultimately reduce bias in early-stage drug development and increases probability to identify first in class compounds and targets for today's intractable diseases.


Assuntos
Angiogênese , Antineoplásicos , Humanos , Sistemas Microfisiológicos , Antineoplásicos/uso terapêutico , Neovascularização Patológica/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia
2.
Angiogenesis ; 25(4): 455-470, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35704148

RESUMO

With recent progress in modeling liver organogenesis and regeneration, the lack of vasculature is becoming the bottleneck in progressing our ability to model human hepatic tissues in vitro. Here, we introduce a platform for routine grafting of liver and other tissues on an in vitro grown microvascular bed. The platform consists of 64 microfluidic chips patterned underneath a 384-well microtiter plate. Each chip allows the formation of a microvascular bed between two main lateral vessels by inducing angiogenesis. Chips consist of an open-top microfluidic chamber, which enables addition of a target tissue by manual or robotic pipetting. Upon grafting a liver microtissue, the microvascular bed undergoes anastomosis, resulting in a stable, perfusable vascular network. Interactions with vasculature were found in spheroids and organoids upon 7 days of co-culture with space of Disse-like architecture in between hepatocytes and endothelium. Veno-occlusive disease was induced by azathioprine exposure, leading to impeded perfusion of the vascularized spheroid. The platform holds the potential to replace animals with an in vitro alternative for routine grafting of spheroids, organoids, or (patient-derived) explants.


Assuntos
Microfluídica , Organoides , Animais , Azatioprina , Técnicas de Cocultura , Humanos , Fígado , Microfluídica/métodos
3.
Front Immunol ; 14: 1118624, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36761747

RESUMO

The vasculature system plays a critical role in inflammation processes in the body. Vascular inflammatory mechanisms are characterized by disruption of blood vessel wall permeability together with increased immune cell recruitment and migration. There is a critical need to develop models that fully recapitulate changes in vascular barrier permeability in response to inflammatory conditions. We developed a scalable platform for parallel measurements of trans epithelial electrical resistance (TEER) in 64 perfused microfluidic HUVEC tubules under inflammatory conditions. Over 250 tubules where exposed to Tumor necrosis factor alpha (TNFα) and interferon gamma (INF-γ) or human peripheral blood mononuclear cells. The inflammatory response was quantified based on changes TEER and expression of ICAM and VE-cadherin. We observed changes in barrier function in the presence of both inflammatory cytokines and human peripheral blood mononuclear cells, characterized by decreased TEER values, increase in ICAM expression as well changes in endothelial morphology. OrganoPlate 3-lane64 based HUVEC tubules provide a valuable tool for inflammatory studies in an automation compatible manner. Continuous TEER measurements enable long term, sensitive assays for barrier studies. We propose the use of our platform as a powerful tool for modelling endothelial inflammation in combination with immune cell interaction that can be used to screen targets and drugs to treat chronic vascular inflammation.


Assuntos
Inflamação , Leucócitos Mononucleares , Humanos , Impedância Elétrica , Movimento Celular , Dispositivos Lab-On-A-Chip
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA