Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Bull Entomol Res ; 113(1): 1-10, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36239260

RESUMO

Ips typographus (L.) and Pityogenes chalcographus (L.) (Coleoptera: Curculionidae) are two common bark beetle species on Norway spruce in Eurasia. Multiple biotic and abiotic factors affect the life cycles of these two beetles, shaping their ecology and evolution. In this article, we provide a comprehensive and comparative summary of selected life-history traits. We highlight similarities and differences in biotic factors, like host range, interspecific competition, host colonization, reproductive behaviour and fungal symbioses. Moreover, we focus on the species' responses to abiotic factors and compare their temperature-dependent development and flight behaviour, cold adaptations and diapause strategies. Differences in biotic and abiotic traits might be the result of recent, species-specific evolutionary histories, particularly during the Pleistocene, with differences in glacial survival and postglacial recolonization. Finally, we discuss future research directions to understand ecological and evolutionary pathways of the two bark beetle species, for both basic research and applied forest management.


Assuntos
Besouros , Picea , Gorgulhos , Animais , Gorgulhos/microbiologia , Casca de Planta/microbiologia , Picea/microbiologia
2.
Mol Ecol ; 28(20): 4648-4666, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31495015

RESUMO

Elucidating the mechanisms and conditions facilitating the formation of biodiversity are central topics in evolutionary biology. A growing number of studies imply that divergent ecological selection may often play a critical role in speciation by counteracting the homogenising effects of gene flow. Several examples involve phytophagous insects, where divergent selection pressures associated with host plant shifts may generate reproductive isolation, promoting speciation. Here, we use ddRADseq to assess the population structure and to test for host-related genomic differentiation in the European cherry fruit fly, Rhagoletis cerasi (L., 1758) (Diptera: Tephritidae). This tephritid is distributed throughout Europe and western Asia, and has adapted to two different genera of host plants, Prunus spp. (cherries) and Lonicera spp. (honeysuckle). Our data imply that geographic distance and geomorphic barriers serve as the primary factors shaping genetic population structure across the species range. Locally, however, flies genetically cluster according to host plant, with consistent allele frequency differences displayed by a subset of loci between Prunus and Lonicera flies across four sites surveyed in Germany and Norway. These 17 loci display significantly higher FST values between host plants than others. They also showed high levels of linkage disequilibrium within and between Prunus and Lonicera flies, supporting host-related selection and reduced gene flow. Our findings support the existence of sympatric host races in R. cerasi embedded within broader patterns of geographic variation in the fly, similar to the related apple maggot, Rhagoletis pomonella, in North America.


Assuntos
Especiação Genética , Variação Genética/genética , Especificidade de Hospedeiro/genética , Tephritidae/classificação , Tephritidae/genética , Animais , Fluxo Gênico/genética , Genoma/genética , Alemanha , Desequilíbrio de Ligação/genética , Lonicera , Noruega , Filogeografia , Prunus , Isolamento Reprodutivo
3.
Biol Lett ; 14(5)2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29794009

RESUMO

The bacterial endosymbiont Wolbachia has been used to control insect pests owing to its ability to manipulate their life history and suppress infectious diseases. Therefore, knowledge on Wolbachia dynamics in natural populations is fundamental. The European cherry fruit fly, Rhagoletis cerasi, is infected with the Wolbachia strain wCer2, mainly present in southern and central European populations, and is currently spreading into wCer2-uninfected populations driven by high unidirectional cytoplasmic incompatibility. Here, we describe the distribution of wCer2 along two transition zones where the infection is spreading into wCer2-uninfected R. cerasi populations. Fine-scale sampling of 19 populations in the Czech Republic showed a smooth decrease of wCer2 frequency from south to north within a distance of less than 20 km. Sampling of 12 Hungarian populations, however, showed a sharp decline of wCer2 infection frequency within a few kilometres. We fitted a standard wave equation to our empirical data and estimated a Wolbachia wave speed of 1.9 km yr-1 in the Czech Republic and 1.0 km yr-1 in Hungary. Considering the univoltine life cycle and limited dispersal ability of R. cerasi, our study highlights a rapid Wolbachia spread in natural host populations.


Assuntos
Análise Espacial , Tephritidae/microbiologia , Wolbachia/fisiologia , Animais , República Tcheca , Hungria
4.
J Insect Sci ; 18(3)2018 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-29771340

RESUMO

Heritable bacterial endosymbionts can alter the biology of numerous arthropods. They can influence the reproductive outcome of infected hosts, thus affecting the ecology and evolution of various arthropod species. The spruce bark beetle Pityogenes chalcographus (L.) (Coleoptera: Curculionidae: Scolytinae) was reported to express partial, unidirectional crossing incompatibilities among certain European populations. Knowledge on the background of these findings is lacking; however, bacterial endosymbionts have been assumed to manipulate the reproduction of this beetle. Previous work reported low-density and low-frequency Wolbachia infections of P. chalcographus but found it unlikely that this infection results in reproductive alterations. The aim of this study was to test the hypothesis of an endosymbiont-driven incompatibility, other than Wolbachia, reflected by an infection pattern on a wide geographic scale. We performed a polymerase chain reaction (PCR) screening of 226 individuals from 18 European populations for the presence of the endosymbionts Cardinium, Rickettsia, and Spiroplasma, and additionally screened these individuals for Wolbachia. Positive PCR products were sequenced to characterize these bacteria. Our study shows a low prevalence of these four endosymbionts in P. chalcographus. We detected a yet undescribed Spiroplasma strain in a single individual from Greece. This is the first time that this endosymbiont has been found in a bark beetle. Further, Wolbachia was detected in three beetles from two Scandinavian populations and two new Wolbachia strains were described. None of the individuals analyzed were infected with Cardinium and Rickettsia. The low prevalence of bacteria found here does not support the hypothesis of an endosymbiont-driven reproductive incompatibility in P. chalcographus.


Assuntos
Rickettsia/isolamento & purificação , Spiroplasma/isolamento & purificação , Simbiose , Gorgulhos/microbiologia , Wolbachia/isolamento & purificação , Animais , Feminino , Masculino , Reação em Cadeia da Polimerase , Reprodução
5.
Trends Ecol Evol ; 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38777634

RESUMO

Insects have major impacts on forest ecosystems, from herbivory and soil-nutrient cycling to killing trees at a large scale. Forest insects from temperate, tropical, and subtropical regions have evolved strategies to respond to seasonality; for example, by entering diapause, to mitigate adversity and to synchronize lifecycles with favorable periods. Here, we show that distinct functional groups of forest insects; that is, canopy dwellers, trunk-associated species, and soil/litter-inhabiting insects, express a variety of diapause strategies, but do not show systematic differences in diapause strategy depending on functional group. Due to the overall similarities in diapause strategies, we can better estimate the impacts of anthropogenic change on forest insect populations and, consequently, on key ecosystems.

7.
Insects ; 13(4)2022 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-35447763

RESUMO

Insects are a potential substitute for conventional meat and can be part of a sustainable human diet due to their valuable nutrients and relatively low environmental production impact. One species that is already produced for human consumption and livestock feed is the mealworm, i.e., larvae of Tenebrio molitor. Knowledge of the effects of temperature, and particularly photoperiod, on mealworm development is scarce, but crucial for the improvement of rearing. Therefore, the effects of three temperatures (20 °C, 25 °C, and 30 °C), in combination with three photoperiods (long-day-16 h:8 h light:dark; short-day-8 h:16 h light:dark, and constant darkness) on mealworm survival, developmental time, and growth rate were tested. We describe a significant effect of temperature on survival rate, developmental time, and growth rate. Furthermore, significant effects of photoperiod on developmental time and growth rate were found. At 25 and 30 °C and constant darkness, the highest survival and growth rate, along with the shortest developmental time, were observed. Our data can be used to improve the mass rearing of mealworms for an efficient production of food and feed.

8.
J Pest Sci (2004) ; 95(2): 889-899, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35221845

RESUMO

The bark beetle Ips typographus is the most destructive insect pest in Norway spruce-dominated forests. Its potential to establish multiple generations per year (multivoltinism) is one major trait that makes this beetle a severe pest. Ips typographus enters diapause to adjust its life cycle to seasonally changing environments. Diapause is characterized by developmental and reproductive arrest; it prolongs generation time and thus affects voltinism. In I. typographus a facultative, photoperiod-regulated diapause in the adult stage has been described. In addition, the presence of an obligate, photoperiod-independent, diapause has been hypothesized. The diapause phenotype has important implications for I. typographus voltinism, as populations with obligate diapausing individuals would be univoltine. To test for the presence of different I. typographus diapause phenotypes, we exposed Central and Northern European individuals to a set of photoperiodic treatments. We used two ovarian traits (egg number and vitellarium size) that are associated with gonad development, to infer reproductive arrest and thus diapause. We found a distinct effect of photoperiod on ovarian development, with variable responses in Central and Northern European beetles. We observed obligate diapausing (independent of photoperiod) individuals in Northern Europe, and both facultative (photoperiod-regulated) as well as obligate diapausing individuals in Central Europe. Our results show within-species variation for diapause induction, an adaptation to match life cycles with seasonally fluctuating environmental conditions. As the diapause phenotype affects the potential number of generations per season, our data are the basis for assessing the risk of outbreaks of this destructive bark beetle. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s10340-021-01416-w.

9.
Ecol Evol ; 12(1): e8460, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35127012

RESUMO

In modern wildlife ecology, spatial population genetic methods are becoming increasingly applied. Especially for animal species in fragmented landscapes, preservation of gene flow becomes a high priority target in order to restore genetic diversity and prevent local extinction. Within Central Europe, the Alps represent the core distribution area of the black grouse, Lyrurus tetrix. At its easternmost Alpine range, events of subpopulation extinction have already been documented in the past decades. Molecular data combined with spatial analyses can help to assess landscape effects on genetic variation and therefore can be informative for conservation management. Here, we addressed whether the genetic pattern of the easternmost Alpine black grouse metapopulation system is driven by isolation by distance or isolation by resistance. Correlative ecological niche modeling was used to assess geographic distances and landscape resistances. We then applied regression-based approaches combined with population genetic analyses based on microsatellite data to disentangle effects of isolation by distance and isolation by resistance among individuals and subpopulations. Although population genetic analyses revealed overall low levels of genetic differentiation, the ecological niche modeling showed subpopulations to be clearly delimited by habitat structures. Spatial genetic variation could be attributed to effects of isolation by distance among individuals and isolation by resistance among subpopulations, yet unknown effects might factor in. The easternmost subpopulation was the most differentiated, and at the same time, immigration was not detected; hence, its long-term survival might be threatened. Our study provides valuable insights into the spatial genetic variation of this small-scale metapopulation system of Alpine black grouse.

10.
J Pest Sci (2004) ; 94(3): 591-614, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34720785

RESUMO

Resilience and functionality of European Norway spruce forests are increasingly threatened by mass outbreaks of the bark beetle Ips typographus promoted by heat, wind throw and drought. Here, we review current knowledge on Norway spruce and I. typographus interactions from the perspective of drought-stressed trees, host selection, colonisation behaviour of beetles, with multi-level effects of symbiotic ophiostomatoid fungi. By including chemo-ecological, molecular and behavioural perspectives, we provide a comprehensive picture on this complex, multitrophic system in the light of climate change. Trees invest carbon into specialised metabolism to produce defence compounds against biotic invaders; processes that are strongly affected by physiological stress such as drought. Spruce bark contains numerous terpenoid and phenolic substances, which are important for bark beetle aggregation and attack success. Abiotic stressors such as increased temperatures and drought affect composition, amounts and emission rates of volatile compounds. Thus, drought events may influence olfactory responses of I. typographus, and further the pheromone communication enabling mass attack. In addition, I. typographus is associated with numerous ophiostomatoid fungal symbionts with multiple effects on beetle life history. Symbiotic fungi degrade spruce toxins, help to exhaust tree defences, produce beetle semiochemicals, and possibly provide nutrition. As the various fungal associates have different temperature optima, they can influence the performance of I. typographus differently under changing environmental conditions. Finally, we discuss why effects of drought on tree-killing by bark beetles are still poorly understood and provide an outlook on future research on this eruptive species using both, field and laboratory experiments.

11.
Insects ; 11(10)2020 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-33027888

RESUMO

The endosymbiont Wolbachia can manipulate arthropod host reproduction by inducing cytoplasmic incompatibility (CI), which results in embryonic mortality when infected males mate with uninfected females. A CI-driven invasion of Wolbachia can result in a selective sweep of associated mitochondrial haplotype. The co-inheritance of Wolbachia and host mitochondrial DNA can therefore provide significant information on the dynamics of an ongoing Wolbachia invasion. Therefore, transition zones (i.e., regions where a Wolbachia strain is currently spreading from infected to uninfected populations) represent an ideal area to investigate the relationship between Wolbachia and host mitochondrial haplotype. Here, we studied Wolbachia-mitochondrial haplotype associations in the European cherry fruit fly, Rhagoletis cerasi, in two transition zones in the Czech Republic and Hungary, where the CI-inducing strain wCer2 is currently spreading. The wCer2-infection status of 881 individuals was compared with the two known R. cerasi mitochondrial haplotypes, HT1 and HT2. In accordance with previous studies, wCer2-uninfected individuals were associated with HT1, and wCer2-infected individuals were mainly associated with HT2. We found misassociations only within the transition zones, where HT2 flies were wCer2-uninfected, suggesting the occurrence of imperfect maternal transmission. We did not find any HT1 flies that were wCer2-infected, suggesting that Wolbachia was not acquired horizontally. Our study provides new insights into the dynamics of the early phase of a Wolbachia invasion.

12.
Insects ; 10(6)2019 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-31208002

RESUMO

Numerous terrestrial arthropods are infected with the alphaproteobacterium Wolbachia. This endosymbiont is usually transmitted vertically from infected females to their offspring and can alter the reproduction of hosts through various manipulations, like cytoplasmic incompatibility (CI), enhancing its spread in new host populations. Studies on the spatial and temporal dynamics of Wolbachia under natural conditions are scarce. Here, we analyzed Wolbachia infection frequencies in populations of the European cherry fruit fly, Rhagoletis cerasi (L.), in central Germany-an area of an ongoing spread of the CI-inducing strain wCer2. In total, 295 individuals from 19 populations were PCR-screened for the presence of wCer2 and their mitochondrial haplotype. Results were compared with historic data to understand the infection dynamics of the ongoing wCer2 invasion. An overall wCer2 infection frequency of about 30% was found, ranging from 0% to 100% per population. In contrast to an expected smooth transition from wCer2-infected to completely wCer2-uninfected populations, a relatively scattered infection pattern across geography was observed. Moreover, a strong Wolbachia-haplotype association was detected, with only a few rare misassociations. Our results show a complex dynamic of an ongoing Wolbachia spread in natural field populations of R. cerasi.

13.
J Econ Entomol ; 112(6): 2761-2766, 2019 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-31550003

RESUMO

The pine processionary moth, Thaumetopoea pityocampa (Denis and Schiffermüller), is an important insect in the Mediterranean region, as it defoliates pines and its urticating hairs can cause allergic reactions in humans and animals. Moreover, this species exhibits an interesting genetic structure as recently a distinct East-North African mtDNA lineage ('ENA clade') has been described. This clade has been recently detected in Greek populations where it has currently expanded its range by replacing the 'endemic' T. pityocampa lineages. Here, we report new data on the rapid spread of 'ENA clade' in the Greek island Evoia in only a few years. As the underlying mechanisms of the 'ENA clade' range expansion has not been studied so far, we screened T. pityocampa for an infection with the heritable bacterial endosymbionts Wolbachia (Bacteria: Anaplasmataceae), Cardinium (Bacteria: Bacteroidaceae), Rickettsia (Bacteria: Rickettsiaceae) and Spiroplasma (Bacteria: Spiroplasmataceae). These bacteria can manipulate the reproduction of infected hosts, something that could potentially explain the rapid spread of 'ENA clade' lineage. Therefore, we screened 28 individuals that exhibited T. pityocampa 'ENA clade' and 'endemic' T. pityocampa haplotypes from nine populations scattered all over Greece. None of them was infected with any of the four endosymbionts, suggesting that these bacteria do not cause reproductive manipulations in T. pityocampa lineages and, thus, other factors should be explored in future research efforts.


Assuntos
Mariposas , Wolbachia , Animais , Grécia , Humanos
14.
Biol J Linn Soc Lond ; 127(1): 24-33, 2019 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-31186586

RESUMO

The Apennine Mountains in Italy are an important biogeographical region and of particular interest in phylogeographical research, because they have been a refugium during Pleistocene glaciation events for numerous European species. We performed a genetic study on the Eurasian bark beetle Pityogenes chalcographus (Linnaeus, 1760), focusing on two Apennine (Italian) and two Central European (Austrian) locations to assess the influence of the Apennines in the evolutionary history of the beetle, particularly during the Pleistocene. We analysed a part of the mitochondrial COI gene and a set of 5470 informative genome-wide markers to understand its biogeography. We found 75 distinct mitochondrial haplotypes, which are structured in three main clades. In general, the Apennine locations harbour a higher number of mitochondrial clades than Central European sites, with one specific clade exclusively detected in the Apennines. Analysis of our genome-wide, multi-locus dataset reveals a clustering of P. chalcographus by geography, with Italian individuals clearly separated from Austrian samples. Our data highlight the significance of the Apennines for the genetic diversity of P. chalcographus and support the hypothesis that this area was an important refugium during unfavourable conditions in the Pleistocene. We discuss additional life-history traits and processes that shaped the evolution of this widespread beetle.

15.
Sci Rep ; 8(1): 14207, 2018 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-30242185

RESUMO

Historical climatic oscillations and co-evolutionary dependencies were key evolutionary drivers shaping the current population structure of numerous organisms. Here, we present a genome-wide study on the biogeography of the bark beetle Pityogenes chalcographus, a common and widespread insect in Eurasia. Using Restriction Associated DNA Sequencing, we studied the population structure of this beetle across a wide part of its western Palaearctic range with the goal of elucidating the role of Pleistocene glacial-interglacial cycling and its close relationship to its main host plant Norway spruce. Genetic distance among geographic sites was generally low, but clustering analysis revealed three genetically distinct groups, that is, southern, central/south-eastern, and north-eastern locations. Thus, three key P. chalcographus glacial refugia were identified: in the Italian-Dinaric region, the Carpathians, and the Russian plain, shared with its main host. The current phylogeographic signal was affected by genetic divergence among geographically isolated refugia during glacial periods and postglacial re-establishment of genetic exchange through secondary contact, reflected by admixture among genetic groups. Additionally, certain life history traits, like the beetle's dispersal and reproductive behaviour, considerably influenced its demographic history. Our results will help to understand the biogeography of other scolytine beetles, especially species with similar life history traits.


Assuntos
Besouros/genética , Animais , Evolução Biológica , DNA Mitocondrial/genética , Demografia , Evolução Molecular , Variação Genética/genética , Estudo de Associação Genômica Ampla/métodos , Haplótipos/genética , Noruega , Filogenia , Filogeografia/métodos , Casca de Planta , Refúgio de Vida Selvagem , Reprodução/genética , Federação Russa , Análise de Sequência de DNA/métodos
16.
Physiol Entomol ; 42(3): 200-210, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28979060

RESUMO

Diapause, a strategy to endure unfavourable conditions (e.g. cold winters) is commonly found in ectothermic organisms and is characterized by an arrest of development and reproduction, a reduction of metabolic rate, and an increased resistance to adversity. Diapause, in addition to adaptations for surviving low winter temperatures, significantly influences phenology, voltinism and ultimately population growth. We review the literature on diapause and overwintering behaviour of two bark beetle species that affect spruce-dominated forests in the northern hemisphere, and describe and compare how these strategies can influence population dynamics. The European spruce bark beetle Ips typographus (L.) (Coleoptera, Curculionidae) is the most important forest pest of Norway spruce in Europe. It enters an adult reproductive diapause that might be either facultative or obligate. Obligate diapausing beetles are considered strictly univoltine, entering this dormancy type regardless of environmental cues. Facultative diapausing individuals enter diapause induced by photoperiod, modified by temperature, thus being potentially multivoltine. The spruce beetle Dendroctonus rufipennis (Kirby) (Coleoptera: Curculionidae) infests all spruce species in its natural range in North America. A facultative prepupal diapause is averted by relatively warm temperatures, resulting in a univoltine life cycle, whereas cool temperatures induce prepupal diapause leading to a semivoltine cycle. An adult obligate diapause in D. rufipennis could limit bi- or multivoltinism. We discuss and compare the influence of diapause and overwinter survival on voltinism and population dynamics of these two species in a changing climate and provide an outlook on future research.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA