Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Angew Chem Int Ed Engl ; 56(20): 5480-5484, 2017 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-28407400

RESUMO

Spiroketals are structural motifs found in many biologically active natural products, which has stimulated considerable efforts toward their synthesis and interest in their use as drug lead compounds. Despite this, the use of spiroketals, and especially bisbenzanulated spiroketals, in a structure-based drug discovery setting has not been convincingly demonstrated. Herein, we report the rational design of a bisbenzannulated spiroketal that potently binds to the retinoid X receptor (RXR) thereby inducing partial co-activator recruitment. We solved the crystal structure of the spiroketal-hRXRα-TIF2 ternary complex, and identified a canonical allosteric mechanism as a possible explanation for the partial agonist behavior of our spiroketal. Our co-crystal structure, the first of a designed spiroketal-protein complex, suggests that spiroketals can be designed to selectively target other nuclear receptor subtypes.


Assuntos
Furanos/química , Coativador 2 de Receptor Nuclear/química , Receptor X Retinoide alfa/química , Compostos de Espiro/química , Cristalografia por Raios X , Humanos , Modelos Moleculares , Estrutura Molecular
2.
Angew Chem Int Ed Engl ; 53(25): 6443-8, 2014 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-24821627

RESUMO

Small ligands are a powerful way to control the function of protein complexes via dynamic binding interfaces. The classic example is found in gene transcription where small ligands regulate nuclear receptor binding to coactivator proteins via the dynamic activation function 2 (AF2) interface. Current ligands target the ligand-binding pocket side of the AF2. Few ligands are known, which selectively target the coactivator side of the AF2, or which can be selectively switched from one side of the interface to the other. We use NMR spectroscopy and modeling to identify a natural product, which targets the retinoid X receptor (RXR) at both sides of the AF2. We then use chemical synthesis, cellular screening and X-ray co-crystallography to split this dual activity, leading to a potent and molecularly efficient RXR agonist, and a first-of-kind inhibitor selective for the RXR/coactivator interaction. Our findings justify future exploration of natural products at dynamic protein interfaces.


Assuntos
Produtos Biológicos/química , Receptores Citoplasmáticos e Nucleares/química , Sítios de Ligação , Compostos de Bifenilo/química , Cristalografia por Raios X , Ligantes , Lignanas/química , Modelos Biológicos , Receptores X de Retinoides/química
3.
J Med Chem ; 67(4): 3039-3065, 2024 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-38306405

RESUMO

Evasion of apoptosis is critical for the development and growth of tumors. The pro-survival protein myeloid cell leukemia 1 (Mcl-1) is an antiapoptotic member of the Bcl-2 family, associated with tumor aggressiveness, poor survival, and drug resistance. Development of Mcl-1 inhibitors implies blocking of protein-protein interactions, generally requiring a lengthy optimization process of large, complex molecules. Herein, we describe the use of DNA-encoded chemical library synthesis and screening to directly generate complex, yet conformationally privileged macrocyclic hits that serve as Mcl-1 inhibitors. By applying a conceptual combination of conformational analysis and structure-based design in combination with a robust synthetic platform allowing rapid analoging, we optimized in vitro potency of a lead series into the low nanomolar regime. Additionally, we demonstrate fine-tuning of the physicochemical properties of the macrocyclic compounds, resulting in the identification of lead candidates 57/59 with a balanced profile, which are suitable for future development toward therapeutic use.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Apoptose , Conformação Molecular , DNA , Linhagem Celular Tumoral , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/química
4.
J Med Chem ; 63(1): 241-259, 2020 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-31821760

RESUMO

Retinoic acid receptor-related orphan receptor γt (RORγt) is a nuclear receptor associated with the pathogenesis of autoimmune diseases. Allosteric inhibition of RORγt is conceptually new, unique for this specific nuclear receptor, and offers advantages over traditional orthosteric inhibition. Here, we report a highly efficient in silico-guided approach that led to the discovery of novel allosteric RORγt inverse agonists with a distinct isoxazole chemotype. The the most potent compound, 25 (FM26), displayed submicromolar inhibition in a coactivator recruitment assay and effectively reduced IL-17a mRNA production in EL4 cells, a marker of RORγt activity. The projected allosteric mode of action of 25 was confirmed by biochemical experiments and cocrystallization with the RORγt ligand binding domain. The isoxazole compounds have promising pharmacokinetic properties comparable to other allosteric ligands but with a more diverse chemotype. The efficient ligand-based design approach adopted demonstrates its versatility in generating chemical diversity for allosteric targeting of RORγt.


Assuntos
Isoxazóis/farmacologia , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/agonistas , Animais , Sítios de Ligação , Linhagem Celular Tumoral , Reação de Cicloadição , Desenho de Fármacos , Agonismo Inverso de Drogas , Isoxazóis/síntese química , Isoxazóis/metabolismo , Ligantes , Camundongos , Microssomos Hepáticos/metabolismo , Simulação de Acoplamento Molecular , Estrutura Molecular , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Relação Estrutura-Atividade
5.
Comput Struct Biotechnol J ; 17: 160-176, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30788082

RESUMO

Targeting the "undruggable" proteome remains one of the big challenges in drug discovery. Recent innovations in the field of targeted protein degradation and manipulation of the ubiquitin-proteasome system open up new therapeutic approaches for disorders that cannot be targeted with conventional inhibitor paradigms. Proteolysis targeting chimeras (PROTACs) are bivalent ligands in which a compound that binds to the protein target of interest is connected to a second molecule that binds an E3 ligase via a linker. The E3 protein is usually either Cereblon or Von Hippel-Lindau. Several examples of selective PROTAC molecules with potent effect in cells and in vivo models have been reported. The degradation of specific proteins via these bivalent molecules is already allowing for the study of biochemical pathways and cell biology with more specificity than was possible with inhibitor compounds. In this review, we provide a comprehensive overview of recent developments in the field of small molecule mediated protein degradation, including transcription factors, kinases and nuclear receptors. We discuss the potential benefits of protein degradation over inhibition as well as the challenges that need to be overcome.

6.
ACS Chem Neurosci ; 8(9): 2065-2077, 2017 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-28691794

RESUMO

Retinoid X receptors (RXRs) play key roles in many physiological processes in both the periphery and central nervous system. In addition, RXRs form heterodimers with other nuclear receptors to exert their physiological effects. The nuclear receptor related 1 protein (NURR1) is particularly interesting because of its role in promoting differentiation and survival of dopamine neurons. However, only a small number of RXR-heterodimer selective modulators are available, with limited chemical diversity. This work describes the synthesis, biochemical evaluation, and structural elucidation of a novel series of RXR ligands with strongly biased interactions with RXRα-NURR1 heterodimers. Targeted modifications to the small molecule biaryl scaffold caused local RXRα side-chain disturbances and displacement of secondary structural elements upon ligand binding. This resulted in the repositioning of protein helices in the heterodimer interface of RXRα, alterations in homo- versus heterodimer formation, and modulation of activation function 2 (AF2). The data provide a rationale for the design of RXR ligands consisting of a highly conserved hydrophilic region, strongly contributing to the ligand affinity, and a variable hydrophobic region, which efficiently probes the effects of structural changes at the level of the ligand on co-regulator recruitment or the RXRα-NURR1 dimerization interface.


Assuntos
Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares/química , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares/metabolismo , Receptor X Retinoide alfa/química , Receptor X Retinoide alfa/metabolismo , Desenho de Fármacos , Escherichia coli , Ésteres/química , Éteres/química , Humanos , Ligação de Hidrogênio , Ligantes , Modelos Moleculares , Estrutura Molecular , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares/agonistas , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares/antagonistas & inibidores , Ligação Proteica , Multimerização Proteica , Receptor X Retinoide alfa/agonistas , Receptor X Retinoide alfa/antagonistas & inibidores , Técnicas do Sistema de Duplo-Híbrido
7.
J Med Chem ; 59(3): 1232-8, 2016 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-26820900

RESUMO

The nuclear receptor Nurr1 can be activated by RXR via heterodimerization (RXR-Nurr1) and is a promising target for treating neurodegenerative diseases. We herein report the enantioselective synthesis and SAR of sterically constricted benzofurans at RXR. The established SAR, using whole cell functional assays, lead to the full agonist 9a at RXR (pEC50 of 8.2) and RXR-Nurr1. The X-ray structure shows enantiomeric discrimination where 9a optimally addresses the ligand binding pocket of RXR.


Assuntos
Benzofuranos/farmacologia , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares/metabolismo , Multimerização Proteica/efeitos dos fármacos , Receptores X de Retinoides/metabolismo , Benzofuranos/síntese química , Benzofuranos/química , Cristalografia por Raios X , Relação Dose-Resposta a Droga , Humanos , Modelos Moleculares , Estrutura Molecular , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares/agonistas , Receptores X de Retinoides/agonistas , Relação Estrutura-Atividade
8.
ACS Chem Biol ; 10(2): 475-84, 2015 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-25386784

RESUMO

The estrogen receptor (ER) is the number one target for the treatment of endocrine responsive breast cancer and remains a highly attractive target for new drug development. Despite considerable efforts to understand the role of ER post-translational modifications (PTMs), the complexity of these modifications and their impact, at the molecular level, are poorly understood. Using a chemical biology approach, fundamentally rooted in an efficient protein semisynthesis of tyrosine phosphorylated ER constructs, the complex role of the ER tyrosine phosphorylation is addressed here for the first time on a molecular level. The semisynthetic approach allows for the site-specific introduction of PTMs as well as biophysical probes. A combination of biophysical techniques, including NMR, with molecular dynamics studies reveals the role of the phosphorylation of the clinically relevant tyrosine 537 (Y537) in ERα and the analogous tyrosine (Y488) in ERß. Phosphorylation has important effects on the dynamics of the ER Helix 12, which is centrally involved in receptor activity regulation, and on its interplay with ligand and cofactor binding, but with differential regulatory effects of the analogous PTMs on the two ER subtypes. Combined, the results bring forward a novel molecular model of a phosphorylation-induced subtype specific ER modulatory mechanism, alternative to the widely accepted ligand-induced activation mechanism.


Assuntos
Coativadores de Receptor Nuclear/metabolismo , Receptores de Estrogênio/metabolismo , Sítios de Ligação , Modelos Moleculares , Coativadores de Receptor Nuclear/química , Fosforilação , Ligação Proteica , Conformação Proteica , Estrutura Terciária de Proteína , Receptores de Estrogênio/química
9.
Nat Commun ; 6: 8833, 2015 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-26640126

RESUMO

RORγt is critical for the differentiation and proliferation of Th17 cells associated with several chronic autoimmune diseases. We report the discovery of a novel allosteric binding site on the nuclear receptor RORγt. Co-crystallization of the ligand binding domain (LBD) of RORγt with a series of small-molecule antagonists demonstrates occupancy of a previously unreported allosteric binding pocket. Binding at this non-canonical site induces an unprecedented conformational reorientation of helix 12 in the RORγt LBD, which blocks cofactor binding. The functional consequence of this allosteric ligand-mediated conformation is inhibition of function as evidenced by both biochemical and cellular studies. RORγt function is thus antagonized in a manner molecularly distinct from that of previously described orthosteric RORγt ligands. This brings forward an approach to target RORγt for the treatment of Th17-mediated autoimmune diseases. The elucidation of an unprecedented modality of pharmacological antagonism establishes a mechanism for modulation of nuclear receptors.


Assuntos
Interleucina-17/metabolismo , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/química , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Sítio Alostérico , Animais , Diferenciação Celular , Humanos , Interleucina-17/química , Ligantes , Camundongos , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , Estrutura Terciária de Proteína , Células Th17/química , Células Th17/metabolismo
10.
Chem Commun (Camb) ; 47(24): 6798-800, 2011 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-21499633

RESUMO

Cucurbit[8]uril is a supramolecular inducer of protein heterodimerization for proteins appended with methylviologen and naphthalene host elements. Two sets of fluorescent protein pairs, which visualize the specific protein assembly process, enabled the interplay of the supramolecular elements with the proteins to be established.


Assuntos
Hidrocarbonetos Aromáticos com Pontes/metabolismo , Imidazóis/metabolismo , Proteínas Luminescentes/metabolismo , Naftalenos/metabolismo , Paraquat/metabolismo , Proteínas Luminescentes/química , Naftalenos/química , Paraquat/química , Multimerização Proteica , Espectrometria de Fluorescência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA