Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
Plant J ; 118(4): 1207-1217, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38319793

RESUMO

CpcL-phycobilisomes (CpcL-PBSs) are a reduced type of phycobilisome (PBS) found in several cyanobacteria. They lack the traditional PBS terminal energy emitters, but still show the characteristic red-shifted fluorescence at ~670 nm. We established a method of assembling in vitro a rod-membrane linker protein, CpcL, with phycocyanin, generating complexes with the red-shifted spectral features of CpcL-PBSs. The red-shift arises from the interaction of a conserved key glutamine, Q57 of CpcL in Synechocystis sp. PCC 6803, with a single phycocyanobilin chromophore of trimeric phycocyanin at one of the three ß82-sites. This chromophore is the terminal energy acceptor of CpcL-PBSs and donor to the photosystem(s). This mechanism also operates in PBSs from Acaryochloris marina MBIC11017. We then generated multichromic complexes harvesting light over nearly the complete visible range via the replacement of phycocyanobilin chromophores at sites α84 and ß153 of phycocyanins by phycoerythrobilin and/or phycourobilin. The results demonstrate the rational design of biliprotein-based light-harvesting elements by engineering CpcL and phycocyanins, which broadens the light-harvesting range and accordingly improves the light-harvesting capacity and may be potentially applied in solar energy harvesting.


Assuntos
Proteínas de Bactérias , Ficobilinas , Ficobilissomas , Ficocianina , Synechocystis , Ficobilissomas/metabolismo , Ficocianina/metabolismo , Ficocianina/química , Synechocystis/metabolismo , Proteínas de Bactérias/metabolismo , Ficobilinas/metabolismo , Ficobilinas/química , Cianobactérias/metabolismo
2.
Photosynth Res ; 160(1): 55-60, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38488941

RESUMO

The first use of the word 'chlorophyll' (chlorophile or chlorophyle in the French original) appeared in two papers by Pierre-Joseph Pelletier and Joseph Bienaimé Caventou, pharmacists in Paris who isolated and studied the green pigment from plants. Here, we provide English translations of their 1818 note and the slightly longer 1817 paper. Historical context is provided including a timeline of key discoveries in chlorophyll chemistry pertaining to photosynthesis.


Assuntos
Clorofila , Fotossíntese , Plantas
3.
Photosynth Res ; 2024 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-38182842

RESUMO

Far-red absorbing allophycocyanins (APC), identified in cyanobacteria capable of FRL photoacclimation (FaRLiP) and low-light photoacclimation (LoLiP), absorb far-red light, functioning in energy transfer as light-harvesting proteins. We report an optimized method to obtain high purity far-red absorbing allophycocyanin B, AP-B2, of Chroococcidiopsis thermalis sp. PCC7203 by synthesis in Escherichia coli and an improved purification protocol. The crystal structure of the trimer, (PCB-ApcD5/PCB-ApcB2)3, has been resolved to 2.8 Å. The main difference to conventional APCs absorbing in the 650-670 nm range is a largely flat chromophore with the co-planarity extending, in particular, from rings BCD to ring A. This effectively extends the conjugation system of PCB and contributes to the super-red-shifted absorption of the α-subunit (λmax = 697 nm). On complexation with the ß-subunit, it is even further red-shifted (λmax, absorption = 707 nm, λmax, emission = 721 nm). The relevance of ring A for this shift is supported by mutagenesis data. A variant of the α-subunit, I123M, has been generated that shows an intense FR-band already in the absence of the ß-subunit, a possible model is discussed. Two additional mechanisms are known to red-shift the chromophore spectrum: lactam-lactim tautomerism and deprotonation of the chromophore that both mechanisms appear inconsistent with our data, leaving this question unresolved.

4.
Chemistry ; 29(9): e202203367, 2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36382427

RESUMO

Phycobilisomes, the light-harvesting complexes of cyanobacteria and red algae, are a resource for photosynthetic, photonic and fluorescence labeling elements. They cover an exceptionally broad spectral range, but the complex superstructure and assembly have been an obstacle. By replacing in Synechocystis sp. PCC 6803 the biliverdin reductases, we studied the role of chromophores in the assembly of the phycobilisome core. Introduction of the green-absorbing phycoerythrobilin instead of the red-absorbing phycocyanobilin inhibited aggregation. A novel, trimeric allophycocyanin (Dic-APC) was obtained. In the small (110 kDa) unit, the two chromophores, phycoerythrobilin and phytochromobilin, cover a wide spectral range (550 to 660 nm). Due to efficient energy transfer, it provides an efficient artificial light-harvesting element. Dic-APC was generated in vitro by using the contained core-linker, LC , for template-assisted purification and assembly. Labeling the linker provides a method for targeting Dic-APC.


Assuntos
Cianobactérias , Fotossíntese , Ficobilissomas/química , Ficobilissomas/metabolismo , Fluorescência
5.
Molecules ; 27(3)2022 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-35164358

RESUMO

Chlorophylls provide the basis for photosynthesis and thereby most life on Earth. Besides their involvement in primary charge separation in the reaction center, they serve as light-harvesting and light-sensing pigments, they also have additional functions, e.g., in inter-system electron transfer. Chlorophylls also have a wealth of applications in basic science, medicine, as colorants and, possibly, in optoelectronics. Considering that there has been more than 200 years of chlorophyll research, one would think that all has been said on these pigments. However, the opposite is true: ongoing research evidenced in this Special Issue brings together current work on chlorophylls and on their carotenoid counterparts. These introductory notes give a very brief and in part personal account of the history of chlorophyll research and applications, before concluding with a snapshot of this year's publications.


Assuntos
Carotenoides/metabolismo , Clorofila/história , Transferência de Energia , Complexos de Proteínas Captadores de Luz , Fotossíntese , Transporte de Elétrons , História do Século XIX , História do Século XX , História do Século XXI , Humanos
6.
Plant J ; 102(3): 529-540, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31820831

RESUMO

Phycobilisomes are large light-harvesting complexes attached to the stromal side of thylakoids in cyanobacteria and red algae. They can be remodeled or degraded in response to changing light and nutritional status. Both the core and the peripheral rods of phycobilisomes contain biliproteins. During biliprotein biosynthesis, open-chain tetrapyrrole chromophores are attached covalently to the apoproteins by dedicated lyases. Another set of non-bleaching (Nb) proteins has been implicated in phycobilisome degradation, among them NblA and NblB. We report in vitro experiments with lyases, biliproteins and NblA/B which imply that the situation is more complex than currently discussed: lyases can also detach the chromophores and NblA and NblB can modulate lyase-catalyzed binding and detachment of chromophores in a complex fashion. We show: (i) NblA and NblB can interfere with chromophorylation as well as chromophore detachment of phycobiliprotein, they are generally inhibitors but in some cases enhance the reaction; (ii) NblA and NblB promote dissociation of whole phycobilisomes, cores and, in particular, allophycocyanin trimers; (iii) while NblA and NblB do not interact with each other, both interact with lyases, apo- and holo-biliproteins; (iv) they promote synergistically the lyase-catalyzed chromophorylation of the ß-subunit of the major rod component, CPC; and (v) they modulate lyase-catalyzed and lyase-independent chromophore transfers among biliproteins, with the core protein, ApcF, the rod protein, CpcA, and sensory biliproteins (phytochromes, cyanobacteriochromes) acting as potential traps. The results indicate that NblA/B can cooperate with lyases in remodeling the phycobilisomes to balance the metabolic requirements of acclimating their light-harvesting capacity without straining the overall metabolic economy of the cell.


Assuntos
Cianobactérias/metabolismo , Complexos de Proteínas Captadores de Luz/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
7.
Photosynth Res ; 147(2): 125-130, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33387193

RESUMO

Robert John Porra (7.8.1931-16.5.2019) is probably best known for his substantial practical contributions to plant physiology and photosynthesis by addressing the problems of both the accurate spectroscopic estimation and the extractability of chlorophylls in many organisms. Physiological data and global productivity estimates, in particular of marine primary productivity, are often quoted on a chlorophyll basis. He also made his impact by work on all stages of tetrapyrrole biosynthesis: he proved the C5 pathway to chlorophylls, detected an alternative route to protoporphyrin in anaerobes and the different origin of the oxygen atoms in anaerobes and aerobes. A brief review of his work is supplemented by personal memories of the authors.


Assuntos
Clorofila/metabolismo , Fotossíntese , Fenômenos Fisiológicos Vegetais , Tetrapirróis/biossíntese , Austrália , Clorofila/história , História do Século XX , História do Século XXI , Humanos , Masculino , Oxigênio/história , Oxigênio/metabolismo , Tetrapirróis/história
8.
Photosynth Res ; 145(2): 71-82, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32458186

RESUMO

Constantin A. (Tino) Rebeiz, a pioneer in the field of chlorophyll biosynthesis, and a longtime member of the University of Illinois community of plant biologists, passed away on July 25, 2019. He came to the USA at a time that was difficult for members of minority groups to be in academia. However, his passion for the complexity of the biochemical origin of chlorophylls drove a career in basic sciences which extended into applied areas of environmentally friendly pesticides and treatment for skin cancer. He was a philanthropist; in retirement, he founded the Rebeiz Foundation for Basic Research which recognized excellence and lifetime achievements of selected top scientists in the general area of photosynthesis research. His life history, scientific breakthroughs, and community service hold important lessons for the field.


Assuntos
Ácido Aminolevulínico/história , Clorofila/história , Praguicidas/história , Neoplasias Cutâneas/história , Logro , História do Século XX , Humanos , Fotossíntese , Neoplasias Cutâneas/terapia
9.
Proc Natl Acad Sci U S A ; 114(50): 13170-13175, 2017 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-29180420

RESUMO

The light-harvesting phycobilisome in cyanobacteria and red algae requires the lyase-catalyzed chromophorylation of phycobiliproteins. There are three functionally distinct lyase families known. The heterodimeric E/F type is specific for attaching bilins covalently to α-subunits of phycocyanins and phycoerythrins. Unlike other lyases, the lyase also has chromophore-detaching activity. A subclass of the E/F-type lyases is, furthermore, capable of chemically modifying the chromophore. Although these enzymes were characterized >25 y ago, their structures remained unknown. We determined the crystal structure of the heterodimer of CpcE/F from Nostoc sp. PCC7120 at 1.89-Å resolution. Both subunits are twisted, crescent-shaped α-solenoid structures. CpcE has 15 and CpcF 10 helices. The inner (concave) layer of CpcE (helices h2, 4, 6, 8, 10, 12, and 14) and the outer (convex) layer of CpcF (h16, 18, 20, 22, and 24) form a cavity into which the phycocyanobilin chromophore can be modeled. This location of the chromophore is supported by mutations at the interface between the subunits and within the cavity. The structure of a structurally related, isomerizing lyase, PecE/F, that converts phycocyanobilin into phycoviolobilin, was modeled using the CpcE/F structure as template. A H87C88 motif critical for the isomerase activity of PecE/F is located at the loop between h20 and h21, supporting the proposal that the nucleophilic addition of Cys-88 to C10 of phycocyanobilin induces the isomerization of phycocyanobilin into phycoviolobilin. Also, the structure of NblB, involved in phycobilisome degradation could be modeled using CpcE as template. Combined with CpcF, NblB shows a low chromophore-detaching activity.


Assuntos
Proteínas de Bactérias/química , Liases/química , Nostoc/enzimologia , Proteínas de Bactérias/metabolismo , Liases/metabolismo , Simulação de Dinâmica Molecular , Ficobilinas/metabolismo , Ficocianina/metabolismo , Domínios Proteicos
10.
Photosynth Res ; 140(2): 215-219, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30194670

RESUMO

A recent publication (Esteban in New Phytol 217:341-342, 2018) describes how the use and citation of the assay of chlorophylls a and b extracted in aqueous 80% acetone by Arnon (Plant Physiol 2:1-15, 1949) is increasing, even in journals with high impact factors. This is a very disconcerting situation: the assay is outdated because it relies on the seriously under-estimated extinction coefficients of Mackinney (J Biol Chem 140:315-322, 1941), and the assay of chlorophylls is one of the most important, and much reported, procedures in studies of photosynthesis and related plant biological fields. Using the assay has led to the accumulation of masses of inaccurate data and confusion during the resolution of some plant biological problems. A summary not only of an accurate assay of chlorophylls in aqueous 80% acetone but also of a long-known method to correct the data obtained by Arnon's procedure (cf. Porra et al. in Biochim Biophys Acta 975:384-394, 1989) is briefly described below together with references to reliable assays in this and other solvents by other authors.


Assuntos
Clorofila A/isolamento & purificação , Clorofila/isolamento & purificação , Fotossíntese , Solventes
11.
Biochim Biophys Acta Mol Cell Res ; 1864(10): 1877-1886, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28782566

RESUMO

Biliproteins have extended the spectral range of fluorescent proteins into the region of maximal transmission of most tissues and are favorable for multiplexing, but their application presents considerable challenges. Their fluorescence derives from open-chain tetrapyrrole chromophores which often require the introduction of dedicated reductases and lyases. In addition, their fluorescence yield generally decreases with increasing wavelengths and depends strongly on the state of the binding protein. We report fluorescent biliproteins, termed BDFPs, that are derived from the phycobilisome core subunit, ApcF2: this subunit is induced in the thermophilic cyanobacterium, Chroococcidiopsis thermalis, by far-red light and binds phycocyanobilin non-covalently. The BDFPs obtained by molecular evolution of ApcF2 bind the more readily accessible biliverdin covalently while retaining the red-shifted fluorescence in the near-infrared spectral region (~710nm). They are small monomers (~15kDa) and not only show excellent photostability, but are also thermostable up to 80°C, tolerate acid down to pH2 and high concentrations of denaturants. The result indicates far-red adapting cyanobacteria as a useful source for designing extremely red-shifted fluorescent markers. In vivo performance of BDFPs as biomarkers in conventional and super-resolution microscopy, alone or fused to target proteins, is exemplified in several mammalian cells, including, human cell lines, in the nematode, Caenorhabditis elegans and, at low pH, in Lactobacillus lactis.


Assuntos
Proteínas de Bactérias/química , Ficobiliproteínas/química , Ficobilissomas/metabolismo , Proteínas de Bactérias/metabolismo , Cianobactérias/química , Fluorescência , Humanos , Luz , Ficobiliproteínas/metabolismo , Ficobilissomas/química , Espectrometria de Fluorescência
12.
Proc Natl Acad Sci U S A ; 112(52): 15880-5, 2015 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-26669441

RESUMO

Photosynthesis relies on energy transfer from light-harvesting complexes to reaction centers. Phycobilisomes, the light-harvesting antennas in cyanobacteria and red algae, attach to the membrane via the multidomain core-membrane linker, L(CM). The chromophore domain of L(CM) forms a bottleneck for funneling the harvested energy either productively to reaction centers or, in case of light overload, to quenchers like orange carotenoid protein (OCP) that prevent photodamage. The crystal structure of the solubly modified chromophore domain from Nostoc sp. PCC7120 was resolved at 2.2 Å. Although its protein fold is similar to the protein folds of phycobiliproteins, the phycocyanobilin (PCB) chromophore adopts ZZZssa geometry, which is unknown among phycobiliproteins but characteristic for sensory photoreceptors (phytochromes and cyanobacteriochromes). However, chromophore photoisomerization is inhibited in L(CM) by tight packing. The ZZZssa geometry of the chromophore and π-π stacking with a neighboring Trp account for the functionally relevant extreme spectral red shift of L(CM). Exciton coupling is excluded by the large distance between two PCBs in a homodimer and by preservation of the spectral features in monomers. The structure also indicates a distinct flexibility that could be involved in quenching. The conclusions from the crystal structure are supported by femtosecond transient absorption spectra in solution.


Assuntos
Proteínas de Bactérias/metabolismo , Nostoc/metabolismo , Ficobiliproteínas/metabolismo , Ficobilissomas/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Cristalografia por Raios X , Transferência de Energia/efeitos da radiação , Cinética , Luz , Modelos Moleculares , Mutação , Nostoc/genética , Nostoc/efeitos da radiação , Fotossíntese/efeitos da radiação , Ficobiliproteínas/química , Ficobiliproteínas/genética , Dobramento de Proteína , Multimerização Proteica , Estrutura Terciária de Proteína , Espectrofotometria/métodos
13.
Biochim Biophys Acta ; 1857(6): 688-94, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27045046

RESUMO

Phycobiliproteins that bind bilins are organized as light-harvesting complexes, phycobilisomes, in cyanobacteria and red algae. The harvested light energy is funneled to reaction centers via two energy traps, allophycocyanin B and the core-membrane linker, ApcE1 (conventional ApcE). The covalently bound phycocyanobilin (PCB) of ApcE1 absorbs near 660 nm and fluoresces near 675 nm. In cyanobacteria capable of near infrared photoacclimation, such as Synechococcus sp. PCC7335, there exist even further spectrally red shifted components absorbing >700 nm and fluorescing >710 nm. We expressed the chromophore domain of the extra core-membrane linker from Synechococcus sp. PCC7335, ApcE2, in E. coli together with enzymes generating the chromophore, PCB. The resulting chromoproteins, PCB-ApcE2(1-273) and the more truncated PCB-ApcE2(24-245), absorb at 700 nm and fluoresce at 714 nm. The red shift of ~40 nm compared with canonical ApcE1 results from non-covalent binding of the chromophore by which its full conjugation length including the Δ3,3(1) double bond is preserved. The extreme spectral red-shift could not be ascribed to exciton coupling: dimeric PCB-ApcE2(1-273) and monomeric-ApcE2(24-245) absorbed and fluoresced similarly. Chromophorylation of ApcE2 with phycoerythrobilin- or phytochromobilin resulted in similar red shifts (absorption at 615 and 711 nm, fluorescence at 628 or 726 nm, respectively), compared to the covalently bound chromophores. The self-assembled non-covalent chromophorylation demonstrates a novel access to red and near-infrared emitting fluorophores. Brightly fluorescent biomarking was exemplified in E. coli by single-plasmid transformation.


Assuntos
Proteínas de Bactérias/metabolismo , Fotossíntese , Ficobilinas/metabolismo , Ficobilissomas/metabolismo , Ficocianina/metabolismo , Synechococcus/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Escherichia coli/genética , Microscopia de Fluorescência , Modelos Moleculares , Ficobilinas/química , Ficobilinas/genética , Ficocianina/química , Ficocianina/genética , Ficoeritrina/química , Ficoeritrina/genética , Ficoeritrina/metabolismo , Multimerização Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Espectrometria de Fluorescência , Synechococcus/genética
14.
Biochim Biophys Acta ; 1857(9): 1607-1616, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27368145

RESUMO

Cyanobacterial light-harvesting complexes, phycobilisomes, can undergo extensive remodeling under varying light conditions. Acclimation to far-red light involves not only generation of red-shifted chlorophylls in the photosystems, but also induction of additional copies of core biliproteins that have been related to red-shifted components of the phycobilisome (Gan et al., Life 5, 4, 2015). We are studying the molecular basis for these acclimations in Chroococcidiopsis thermalis sp. PCC7203. Five far-red induced allophycocyanin subunits (ApcA2, ApcA3, ApcB2, ApcB3 and ApcF2) were expressed in Escherichia coli, together with S-type chromophore-protein lyases and in situ generated chromophore, phycocyanobilin. Only one subunit, ApcF2, shows an unusual red-shift (λAmax~675nm, λFmax~698nm): it binds the chromophore non-covalently, thereby preserving its full conjugation length. This mechanism operates also in two Cys-variants of the induced subunits of bulky APC. All other wild-type subunits bind phycocyanobilin covalently to the conventional Cys-81 under catalysis of the lyase, CpcS1. Although three of them also show binding to additional cysteines, all absorb and fluoresce similar to conventional APC subunits (λAmax~610nm, λFmax~640nm). Another origin of red-shifted complexes was identified, however, when different wild-type α- and ß-subunits of the far-red induced bulky APC were combined in a combinatorial fashion. Strongly red-shifted complexes (λFmax≤722nm) were formed when the α-subunit, PCB-ApcA2, and the ß-subunit, PCB-ApcB2, were generated together in E. coli. This extreme aggregation-induced red-shift of ~90nm of covalently bound chromophores is reminiscent, but much larger, than the ~30nm observed with conventional APC.


Assuntos
Adaptação Fisiológica , Cianobactérias/química , Luz , Ficocianina/química , Sítios de Ligação , Fluorescência , Subunidades Proteicas
15.
Biochim Biophys Acta ; 1857(1): 107-114, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26514405

RESUMO

Phycobilisomes are the main light-harvesting protein complexes in cyanobacteria and some algae. It is commonly accepted that these complexes only absorb green and orange light, complementing chlorophyll absorbance. Here, we present a new phycobilisome derived complex that consists only of allophycocyanin core subunits, having red-shifted absorption peaks of 653 and 712 nm. These red-shifted phycobiliprotein complexes were isolated from the chlorophyll f-containing cyanobacterium, Halomicronema hongdechloris, grown under monochromatic 730 nm-wavelength (far-red) light. The 3D model obtained from single particle analysis reveals a double disk assembly of 120-145 Å with two α/ß allophycocyanin trimers fitting into the two separated disks. They are significantly smaller than typical phycobilisomes formed from allophycocyanin subunits and core-membrane linker proteins, which fit well with a reduced distance between thylakoid membranes observed from cells grown under far-red light. Spectral analysis of the dissociated and denatured phycobiliprotein complexes grown under both these light conditions shows that the same bilin chromophore, phycocyanobilin, is exclusively used. Our findings show that red-shifted phycobilisomes are required for assisting efficient far-red light harvesting. Their discovery provides new insights into the molecular mechanisms of light harvesting under extreme conditions for photosynthesis, as well as the strategies involved in flexible chromatic acclimation to diverse light conditions.


Assuntos
Clorofila/análogos & derivados , Cianobactérias/metabolismo , Ficobilissomas/fisiologia , Clorofila/fisiologia , Fotossíntese , Ficobilissomas/química
16.
Photochem Photobiol Sci ; 16(7): 1153-1161, 2017 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-28594045

RESUMO

Cyanobacterial phycobilisomes funnel the harvested light energy to the reaction centers via two terminal emitters, allophycocyanin B and the core-membrane linker. ApcD is the α-subunit of allophycocyanin B responsible for its red-shifted absorbance (λmax 665 nm). Far-red photo-acclimated cyanobacteria contain certain allophycocyanins that show even further red-shifted absorbances (λmax > 700 nm). We studied the chromophorylation of the three far-red induced ApcD subunits ApcD2, ApcD3 and ApcD4 from Chroococcidiopsis thermalis sp. PCC7203 during the expression in E. coli. The complex behavior emphasizes that a variety of factors contribute to the spectral red-shift. Only ApcD2 bound phycocyanobilin covalently at the canonical position C81, while ApcD3 and ApcD4 gave only traces of stable products. The product of ApcD2 was, however, heterogeneous. The major fraction had a broad absorption around 560 nm and double-peaked fluorescence at 615 and 670 nm. A minor fraction was similar to the product of conventional ApcD, with maximal absorbance around 610 nm and fluorescence around 640 nm. The heterogeneity was lost in C65 and C132 variants; in these variants only the conventional product was formed. With ApcD4, a red-shifted product carrying non-covalently bound phycocyanobilin could be detected in the supernatant after cell lysis. While this chromophore was lost during purification, it could be stabilized by co-assembly with a far-red light-induced ß-subunit, ApcB3.


Assuntos
Cianobactérias/química , Cianobactérias/efeitos da radiação , Escherichia coli/metabolismo , Luz , Ficocianina/química , Ficocianina/metabolismo , Cianobactérias/metabolismo , Fluorescência , Ficobilinas/química , Ficobilinas/metabolismo
17.
J Biol Chem ; 290(32): 19697-709, 2015 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-26088139

RESUMO

Bacteriochlorophyll a biosynthesis requires formation of a 3-hydroxyethyl group on pyrrole ring A that gets subsequently converted into a 3-acetyl group by 3-vinyl bacteriochlorophyllide a hydratase (BchF) followed by 3-hydroxyethyl bacteriochlorophyllide a dehydrogenase (BchC). Heterologous overproduction of Chlorobaculum tepidum BchF revealed an integral transmembrane protein that was efficiently isolated by detergent solubilization. Recombinant C. tepidum BchC was purified as a soluble protein-NAD(+) complex. Substrate recognition of BchC was investigated using six artificial substrate molecules. Modification of the isocyclic E ring, omission of the central magnesium ion, zinc as an alternative metal ion, and a non-reduced B ring system were tolerated by BchC. According to this broadened in vitro activity, the chlorin 3-hydroxyethyl chlorophyllide a was newly identified as a natural substrate of BchC in a reconstituted pathway consisting of dark-operative protochlorophyllide oxidoreductase, BchF, and BchC. The established reaction sequence would allow for an additional new branching point for the synthesis of bacteriochlorophyll a. Biochemical and site-directed mutagenesis analyses revealed, in contrast to theoretical predictions, a zinc-independent BchC catalysis that requires NAD(+) as a cofactor. Based on these results, we are designating a new medium-chain dehydrogenase/reductase family (MDR057 BchC) as theoretically proposed from a recent bioinformatics analysis.


Assuntos
Proteínas de Bactérias/química , Bacterioclorofila A/biossíntese , Chlorobi/enzimologia , NAD/química , Oxirredutases/química , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Bacterioclorofila A/química , Chlorobi/química , Clorofilídeos/química , Clorofilídeos/metabolismo , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , NAD/metabolismo , Oxirredutases/genética , Oxirredutases/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Fotossíntese/fisiologia , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Especificidade por Substrato
18.
J Biol Chem ; 290(2): 1141-54, 2015 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-25422320

RESUMO

Bacteriochlorophyll a biosynthesis requires the stereo- and regiospecific two electron reduction of the C7-C8 double bond of chlorophyllide a by the nitrogenase-like multisubunit metalloenzyme, chlorophyllide a oxidoreductase (COR). ATP-dependent COR catalysis requires interaction of the protein subcomplex (BchX)2 with the catalytic (BchY/BchZ)2 protein to facilitate substrate reduction via two redox active iron-sulfur centers. The ternary COR enzyme holocomplex comprising subunits BchX, BchY, and BchZ from the purple bacterium Roseobacter denitrificans was trapped in the presence of the ATP transition state analog ADP·AlF4(-). Electron paramagnetic resonance experiments revealed a [4Fe-4S] cluster of subcomplex (BchX)2. A second [4Fe-4S] cluster was identified on (BchY/BchZ)2. Mutagenesis experiments indicated that the latter is ligated by four cysteines, which is in contrast to the three cysteine/one aspartate ligation pattern of the closely related dark-operative protochlorophyllide a oxidoreductase (DPOR). In subsequent mutagenesis experiments a DPOR-like aspartate ligation pattern was implemented for the catalytic [4Fe-4S] cluster of COR. Artificial cluster formation for this inactive COR variant was demonstrated spectroscopically. A series of chemically modified substrate molecules with altered substituents on the individual pyrrole rings and the isocyclic ring were tested as COR substrates. The COR enzyme was still able to reduce the B ring of substrates carrying modified substituents on ring systems A, C, and E. However, substrates with a modification of the distantly located propionate side chain were not accepted. A tentative substrate binding mode was concluded in analogy to the related DPOR system.


Assuntos
Ferredoxina-NADP Redutase/biossíntese , Oxirredutases/biossíntese , Fotossíntese/genética , Roseobacter/enzimologia , Clorofilídeos/química , Clorofilídeos/metabolismo , Cisteína/química , Espectroscopia de Ressonância de Spin Eletrônica , Transporte de Elétrons , Ferredoxina-NADP Redutase/química , Ferredoxina-NADP Redutase/metabolismo , Nitrogenase/química , Nitrogenase/metabolismo , Oxirredução , Oxirredutases/química , Roseobacter/genética
19.
J Biol Chem ; 290(31): 19067-80, 2015 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-26063806

RESUMO

The genome of the cyanobacterium Nostoc sp. PCC7120 carries three genes (all4978, all7016, and alr7522) encoding putative heme-binding GAF (cGMP-specific phosphodiesterases, adenylyl cyclases, and FhlA) proteins that were annotated as transcriptional regulators. They are composed of an N-terminal cofactor domain and a C-terminal helix-turn-helix motif. All4978 showed the highest affinity for protoheme binding. The heme binding capability of All7016 was moderate, and Alr7522 did not bind heme at all. The "as isolated" form of All4978, identified by Soret band (λmax = 427 nm), was assigned by electronic absorption, EPR, and resonance Raman spectroscopy as a hexa-coordinated low spin Fe(III) heme with a distal cysteine ligand (absorption of δ-band around 360 nm). The protoheme cofactor is noncovalently incorporated. Reduction of the heme could be accomplished by chemically using sodium dithionite and electrospectrochemically; this latter method yielded remarkably low midpoint potentials of -445 and -453 mV (following Soret and α-band absorption changes, respectively). The reduced form of the heme (Fe(II) state) binds both NO and CO. Cysteine coordination of the as isolated Fe(III) protein is unambiguous, but interestingly, the reduced heme instead displays spectral features indicative of histidine coordination. Cys-His ligand switches have been reported as putative signaling mechanisms in other heme-binding proteins; however, these novel cyanobacterial proteins are the first where such a ligand-switch mechanism has been observed in a GAF domain. DNA binding of the helix-turn-helix domain was investigated using a DNA sequence motif from its own promoter region. Formation of a protein-DNA complex preferentially formed in ferric state of the protein.


Assuntos
Proteínas de Bactérias/química , Cianobactérias/metabolismo , Hemeproteínas/química , Sequência de Aminoácidos , Proteínas de Bactérias/fisiologia , Sequência de Bases , DNA Bacteriano/química , DNA Bacteriano/genética , Heme/química , Hemeproteínas/fisiologia , Ligantes , Dados de Sequência Molecular , Oxirredução , Regiões Promotoras Genéticas , Ligação Proteica , Estrutura Secundária de Proteína
20.
Photochem Photobiol Sci ; 15(4): 546-53, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27004456

RESUMO

The genome of the cyanobacterium Nostoc sp. PCC 7120 encodes a large number of putative bacteriophytochrome and cyanobacteriochrome photoreceptors that, due to their long-wavelength absorption and fluorescence emission, might serve as fluorescent tags in intracellular investigations. We show that the PAS-GAF domain of the bacteriophytochrome, AphB, binds biliverdin covalently and exhibits, besides its reversible photochemistry, a moderate fluorescence in the near infrared (NIR) spectral region. It was selected for further increasing the brightness while retaining the NIR fluorescence. In the first step, amino acids assumed to improve fluorescence were selectively mutated. The resulting variants were then subjected to several rounds of random mutagenesis and screened for enhanced fluorescence in the NIR. The brightness of optimized PAS-GAF variants increased more than threefold compared to that of wt AphB(1-321), with only insignificant spectral shifts (Amax around 695 nm, and Fmax around 720 nm). In general, the brightness increases with decreasing wavelengths, which allows for a selection of the fluorophore depending on the optical properties of the tissue. A spectral heterogeneity was observed when residue His260, located in close proximity to the chromophore, was mutated to Tyr, emphasizing the strong effects of the environment on the electronic properties of the bound biliverdin chromophore.


Assuntos
Nostoc/metabolismo , Ficobilinas/biossíntese , Fitocromo/metabolismo , Microscopia de Fluorescência , Modelos Moleculares , Fitocromo/química , Espectrofotometria Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA