Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 118(11)2021 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-33729988

RESUMO

Understanding magnetic-field generation and amplification in turbulent plasma is essential to account for observations of magnetic fields in the universe. A theoretical framework attributing the origin and sustainment of these fields to the so-called fluctuation dynamo was recently validated by experiments on laser facilities in low-magnetic-Prandtl-number plasmas ([Formula: see text]). However, the same framework proposes that the fluctuation dynamo should operate differently when [Formula: see text], the regime relevant to many astrophysical environments such as the intracluster medium of galaxy clusters. This paper reports an experiment that creates a laboratory [Formula: see text] plasma dynamo. We provide a time-resolved characterization of the plasma's evolution, measuring temperatures, densities, flow velocities, and magnetic fields, which allows us to explore various stages of the fluctuation dynamo's operation on seed magnetic fields generated by the action of the Biermann-battery mechanism during the initial drive-laser target interaction. The magnetic energy in structures with characteristic scales close to the driving scale of the stochastic motions is found to increase by almost three orders of magnitude and saturate dynamically. It is shown that the initial growth of these fields occurs at a much greater rate than the turnover rate of the driving-scale stochastic motions. Our results point to the possibility that plasma turbulence produced by strong shear can generate fields more efficiently at the driving scale than anticipated by idealized magnetohydrodynamics (MHD) simulations of the nonhelical fluctuation dynamo; this finding could help explain the large-scale fields inferred from observations of astrophysical systems.

2.
Langmuir ; 38(2): 786-800, 2022 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-34981941

RESUMO

We consider the long-standing like-charge attraction problem, wherein under certain conditions, similarly charged spheres suspended in aqueous electrolyte have been observed to display a minimum in their interaction potential, contrary to the intuitively expected monotonically varying repulsion. Recently, we described an interfacial mechanism invoking the molecular nature of the solvent that explains this anomalous experimental observation. In our model for the interaction of negatively charged particles in water, the minimum in the pair potential results from the superposition of competing contributions to the total free energy. One of these contributions is the canonical repulsive electrostatic term, whereas the other is a solvation-induced attractive contribution. We find that whereas both contributions grow approximately exponentially with decreasing interparticle separation, the occurrence of a stable, long-ranged minimum in the pair potential arises from differences in the precise interparticle separation dependence of the two terms. Specifically, the interfacial solvation term exhibits a more gradual decay with distance than the electrostatic repulsion, permitting the attractive contribution to dominate the interaction at large distances. Importantly, these disparities become evident in quantities calculated from exact numerical solutions to the governing nonlinear Poisson-Boltzmann (PB) equation for the spatial electrical potential distribution in the system. In marked contrast, we find that the linearized PB equation, applicable in the regime of low surface electrical potentials, does not support nonmonotonic trends in the total interaction free energy within the present model. Our results point to the importance of exact descriptions of electrostatic interactions in real systems that most often do not subscribe to particular mathematical limits where analytical approximations may provide a sufficiently accurate description of the problem.

3.
Proc Natl Acad Sci U S A ; 116(3): 771-776, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30598448

RESUMO

Does overall thermal equilibrium exist between ions and electrons in a weakly collisional, magnetized, turbulent plasma? And, if not, how is thermal energy partitioned between ions and electrons? This is a fundamental question in plasma physics, the answer to which is also crucial for predicting the properties of far-distant astronomical objects such as accretion disks around black holes. In the context of disks, this question was posed nearly two decades ago and has since generated a sizeable literature. Here we provide the answer for the case in which energy is injected into the plasma via Alfvénic turbulence: Collisionless turbulent heating typically acts to disequilibrate the ion and electron temperatures. Numerical simulations using a hybrid fluid-gyrokinetic model indicate that the ion-electron heating-rate ratio is an increasing function of the thermal-to-magnetic energy ratio, [Formula: see text]: It ranges from [Formula: see text] at [Formula: see text] to at least 30 for [Formula: see text] This energy partition is approximately insensitive to the ion-to-electron temperature ratio [Formula: see text] Thus, in the absence of other equilibrating mechanisms, a collisionless plasma system heated via Alfvénic turbulence will tend toward a nonequilibrium state in which one of the species is significantly hotter than the other, i.e., hotter ions at high [Formula: see text] and hotter electrons at low [Formula: see text] Spectra of electromagnetic fields and the ion distribution function in 5D phase space exhibit an interesting new magnetically dominated regime at high [Formula: see text] and a tendency for the ion heating to be mediated by nonlinear phase mixing ("entropy cascade") when [Formula: see text] and by linear phase mixing (Landau damping) when [Formula: see text].

4.
Proc Natl Acad Sci U S A ; 116(4): 1185-1194, 2019 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-30610178

RESUMO

In a collisionless, magnetized plasma, particles may stream freely along magnetic field lines, leading to "phase mixing" of their distribution function and consequently, to smoothing out of any "compressive" fluctuations (of density, pressure, etc.). This rapid mixing underlies Landau damping of these fluctuations in a quiescent plasma-one of the most fundamental physical phenomena that makes plasma different from a conventional fluid. Nevertheless, broad power law spectra of compressive fluctuations are observed in turbulent astrophysical plasmas (most vividly, in the solar wind) under conditions conducive to strong Landau damping. Elsewhere in nature, such spectra are normally associated with fluid turbulence, where energy cannot be dissipated in the inertial-scale range and is, therefore, cascaded from large scales to small. By direct numerical simulations and theoretical arguments, it is shown here that turbulence of compressive fluctuations in collisionless plasmas strongly resembles one in a collisional fluid and does have broad power law spectra. This "fluidization" of collisionless plasmas occurs, because phase mixing is strongly suppressed on average by "stochastic echoes," arising due to nonlinear advection of the particle distribution by turbulent motions. Other than resolving the long-standing puzzle of observed compressive fluctuations in the solar wind, our results suggest a conceptual shift for understanding kinetic plasma turbulence generally: rather than being a system where Landau damping plays the role of dissipation, a collisionless plasma is effectively dissipationless, except at very small scales. The universality of "fluid" turbulence physics is thus reaffirmed even for a kinetic, collisionless system.

5.
Proc Natl Acad Sci U S A ; 113(15): 3950-3, 2016 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-27035981

RESUMO

Magnetic fields pervade the entire universe and affect the formation and evolution of astrophysical systems from cosmological to planetary scales. The generation and dynamical amplification of extragalactic magnetic fields through cosmic times (up to microgauss levels reported in nearby galaxy clusters, near equipartition with kinetic energy of plasma motions, and on scales of at least tens of kiloparsecs) are major puzzles largely unconstrained by observations. A dynamo effect converting kinetic flow energy into magnetic energy is often invoked in that context; however, extragalactic plasmas are weakly collisional (as opposed to magnetohydrodynamic fluids), and whether magnetic field growth and sustainment through an efficient turbulent dynamo instability are possible in such plasmas is not established. Fully kinetic numerical simulations of the Vlasov equation in a 6D-phase space necessary to answer this question have, until recently, remained beyond computational capabilities. Here, we show by means of such simulations that magnetic field amplification by dynamo instability does occur in a stochastically driven, nonrelativistic subsonic flow of initially unmagnetized collisionless plasma. We also find that the dynamo self-accelerates and becomes entangled with kinetic instabilities as magnetization increases. The results suggest that such a plasma dynamo may be realizable in laboratory experiments, support the idea that intracluster medium turbulence may have significantly contributed to the amplification of cluster magnetic fields up to near-equipartition levels on a timescale shorter than the Hubble time, and emphasize the crucial role of multiscale kinetic physics in high-energy astrophysical plasmas.

6.
Nat Commun ; 14(1): 7523, 2023 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-37980408

RESUMO

It has been suggested that the weak magnetic field hosted by the intergalactic medium in cosmic voids could be a relic from the early Universe. However, accepted models of turbulent magnetohydrodynamic decay predict that the present-day strength of fields originally generated at the electroweak phase transition (EWPT) without parity violation would be too low to explain the observed scattering of γ-rays from TeV blazars. Here, we propose that the decay is mediated by magnetic reconnection and conserves the mean square fluctuation level of magnetic helicity. We find that the relic fields would be stronger by several orders of magnitude under this theory than was indicated by previous treatments, which restores the consistency of the EWPT-relic hypothesis with the observational constraints. Moreover, efficient EWPT magnetogenesis would produce relics at the strength required to resolve the Hubble tension via magnetic effects at recombination and seed galaxy-cluster fields close to their present-day strength.

7.
Sci Adv ; 8(10): eabj6799, 2022 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-35263132

RESUMO

In conventional gases and plasmas, it is known that heat fluxes are proportional to temperature gradients, with collisions between particles mediating energy flow from hotter to colder regions and the coefficient of thermal conduction given by Spitzer's theory. However, this theory breaks down in magnetized, turbulent, weakly collisional plasmas, although modifications are difficult to predict from first principles due to the complex, multiscale nature of the problem. Understanding heat transport is important in astrophysical plasmas such as those in galaxy clusters, where observed temperature profiles are explicable only in the presence of a strong suppression of heat conduction compared to Spitzer's theory. To address this problem, we have created a replica of such a system in a laser laboratory experiment. Our data show a reduction of heat transport by two orders of magnitude or more, leading to large temperature variations on small spatial scales (as is seen in cluster plasmas).

8.
Phys Rev E Stat Nonlin Soft Matter Phys ; 70(4 Pt 2): 046304, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15600516

RESUMO

We consider a solvable model of the decay of scalar variance in a single-scale random velocity field. We show that if there is a separation between the flow scale k(-1 )(flow ) and the box size k(-1 )(box ) , the decay rate lambda proportional, variant ( k(box) / k(flow) )(2) is determined by the turbulent diffusion of the box-scale mode. Exponential decay at the rate lambda is preceded by a transient powerlike decay (the total scalar variance approximately t(-5/2) if the Corrsin invariant is zero, t(-3/2) otherwise) that lasts a time t approximately 1/lambda . Spectra are sharply peaked at k= k(box) . The box-scale peak acts as a slowly decaying source to a secondary peak at the flow scale. The variance spectrum at scales intermediate between the two peaks ( k(box) <0) . The mixing of the flow-scale modes by the random flow produces, for the case of large Péclet number, a k(-1+delta) spectrum at k>> k(flow) , where delta proportional lambda is a small correction. Our solution thus elucidates the spectral make up of the "strange mode," combining small-scale structure and a decay law set by the largest scales.

9.
Phys Rev E Stat Nonlin Soft Matter Phys ; 85(3 Pt 2): 036406, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22587195

RESUMO

Weak Alfvénic turbulence in a periodic domain is considered as a mixed state of Alfvén waves interacting with the two-dimensional (2D) condensate. Unlike in standard treatments, no spectral continuity between the two is assumed, and, indeed, none is found. If the 2D modes are not directly forced, k(-2) and k(-1) spectra are found for the Alfvén waves and the 2D modes, respectively, with the latter less energetic than the former. The wave number at which their energies become comparable marks the transition to strong turbulence. For imbalanced energy injection, the spectra are similar, and the Elsasser ratio scales as the ratio of the energy fluxes in the counterpropagating Alfvén waves. If the 2D modes are forced, a 2D inverse cascade dominates the dynamics at the largest scales, but at small enough scales, the same weak and then strong regimes as described above are achieved.

10.
Phys Rev Lett ; 92(6): 064501, 2004 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-14995243

RESUMO

The amplification of magnetic fields in a highly conducting fluid is studied numerically. During growth, the magnetic field is spatially intermittent: it does not uniformly fill the volume, but is concentrated in long thin folded structures. Contrary to a commonly held view, intermittency of the folded field does not increase indefinitely throughout the growth stage if diffusion is present. Instead, as we show, the probability-density function (PDF) of the field-strength becomes self-similar. The normalized moments increase with magnetic Prandtl number in a powerlike fashion. We argue that the self-similarity is to be expected with a finite flow scale and system size. In the nonlinear saturated state, intermittency is reduced and the PDF is exponential. Parallels are noted with self-similar behavior recently observed for passive-scalar mixing and for map dynamos.

11.
Phys Rev Lett ; 92(5): 054502, 2004 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-14995310

RESUMO

We report a series of numerical simulations showing that the critical magnetic Reynolds number Rm(c) for the nonhelical small-scale dynamo depends on the Reynolds number Re. Namely, the dynamo is shut down if the magnetic Prandtl number Pr(m)=Rm/Re is less than some critical value Pr(m,c)< approximately 1 even for Rm for which dynamo exists at Pr(m)> or =1. We argue that, in the limit of Re-->infinity, a finite Pr(m,c) may exist. The second possibility is that Pr(m,c)-->0 as Re--> infinity, while Rm(c) tends to a very large constant value inaccessible at current resolutions. If there is a finite Pr(m,c), the dynamo is sustainable only if magnetic fields can exist at scales smaller than the flow scale, i.e., it is always effectively a large-Pr(m) dynamo. If there is a finite Rm(c), our results provide a lower bound: Rm(c) greater, similar 220 for Pr(m)< or =1/8. This is larger than Rm in many planets and in all liquid-metal experiments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA