Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Scand J Med Sci Sports ; 34(1): e14524, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37853508

RESUMO

Investigations of kinetic asymmetries during bilateral squats following anterior cruciate ligament reconstruction (ACLR) are limited to mainly cross-sectional studies and discrete value data extracted at specific knee angles. We assessed loading asymmetries during squats longitudinally throughout rehabilitation using curve analysis and compared patient-reported outcome measures (PROMs) between those with and without asymmetry. Bodyweight squats were performed by 24 individuals (13 females) post-ACLR on three occasions: (1) Early 2.9 (1.1) months; (2) Mid 8.8 (3.1) months; (3) at Return to Sport (RTS) 13.1 (3.6) months; and 29 asymptomatic controls (22 females) once. Time-normalized between-leg asymmetry curves of sagittal plane hip, knee, and ankle moments and vertical ground reaction forces were compared using functional data analysis methods. Individual asymmetrical loading for ACLR was classified when exceeding the 95% confidence interval of controls during ≥50% of the squat. At Early, ACLR had greater asymmetry than controls for knee (15%-100% eccentric phase; 0%-100% concentric) and ankle flexion moments (56%-65% concentric). At Mid, ACLR had greater asymmetry for knee (41%-72% eccentric) and ankle flexion moments (56%-69% concentric). No between-group differences were found at RTS. From Early to RTS, ACLR reduced asymmetry for hip (21%-46% eccentric), knee (27%-58% concentric), and ankle flexion moments (21%-57% eccentric). At Early, 11/24 underloaded their ACLR knee and 1 overloaded compared with controls. At RTS, 4 underloaded and 6 overloaded. No differences in PROMs were found based on loading asymmetry. Beyond the early phase of rehabilitation from ACLR, individual-level analyses are required to reveal differing loading strategies during bilateral squats.


Assuntos
Lesões do Ligamento Cruzado Anterior , Reconstrução do Ligamento Cruzado Anterior , Feminino , Humanos , Estudos Transversais , Lesões do Ligamento Cruzado Anterior/cirurgia , Articulação do Joelho , Joelho , Reconstrução do Ligamento Cruzado Anterior/reabilitação , Fenômenos Biomecânicos
2.
Biometrics ; 79(2): 1119-1132, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-35352337

RESUMO

Functional data are smooth, often continuous, random curves, which can be seen as an extreme case of multivariate data with infinite dimensionality. Just as componentwise inference for multivariate data naturally performs feature selection, subsetwise inference for functional data performs domain selection. In this paper, we present a unified testing framework for domain selection on populations of functional data. In detail, p-values of hypothesis tests performed on pointwise evaluations of functional data are suitably adjusted for providing control of the familywise error rate (FWER) over a family of subsets of the domain. We show that several state-of-the-art domain selection methods fit within this framework and differ from each other by the choice of the family over which the control of the FWER is provided. In the existing literature, these families are always defined a priori. In this work, we also propose a novel approach, coined thresholdwise testing, in which the family of subsets is instead built in a data-driven fashion. The method seamlessly generalizes to multidimensional domains in contrast to methods based on a priori defined families. We provide theoretical results with respect to consistency and control of the FWER for the methods within the unified framework. We illustrate the performance of the methods within the unified framework on simulated and real data examples and compare their performance with other existing methods.


Assuntos
Correlação de Dados
3.
Scand J Med Sci Sports ; 29(8): 1181-1189, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30972848

RESUMO

Athletes exposed to rapid maneuvers need a high level of dynamic knee stability and robustness, while also controlling whole body movement, to decrease the risk of non-contact knee injury. The effects of high-level athletic training on such measures of movement control have not, however, been thoroughly evaluated. This study investigated whether elite athletes (who regularly perform knee-specific neuromuscular training) show greater dynamic knee robustness and/or different movement strategies than non-athletic controls, in relation to overall knee function. Thirty-nine women (19 athletes, 20 controls) performed standardized rebound side hops (SRSH) while a motion capture system synchronized with two force plates registered three-dimensional trunk, hip, and knee joint angles and moments. Dynamic knee robustness was evaluated using finite helical axis (FHA) inclination angles extracted from knee rotation intervals of 10°, analyzed with independent t tests. Angle and moment curves were analyzed with inferential methods for functional data. Athletes had superior knee function (less laxity, greater hop performances, and strength) but presented similar FHA inclination angles to controls. Movement strategies during the landing phase differed; athletes presented larger (a) hip flexion angles (during 9%-29% of the phase), (b) hip adduction moments (59%-99%), (c) hip internal rotation moments (83%-89%), and (d) knee flexion moments (79%-93%). Thus, elite athletes may have a greater ability than non-athletes to keep the knee robust while performing SRSH more efficiently through increased engagement of the hip. However, dynamic knee robustness associated with lower FHA inclination angles still show room for improvement, thus possibly decreasing knee injury risk.


Assuntos
Traumatismos do Joelho/fisiopatologia , Joelho/fisiologia , Movimento , Exercício Pliométrico , Adolescente , Adulto , Atletas , Fenômenos Biomecânicos , Estudos de Casos e Controles , Feminino , Articulação do Quadril , Humanos , Instabilidade Articular/fisiopatologia , Força Muscular , Músculo Quadríceps/fisiologia , Amplitude de Movimento Articular , Adulto Jovem
4.
J Electromyogr Kinesiol ; 76: 102870, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38507930

RESUMO

BACKGROUND: Kinematic studies suggest that injury of the anterior cruciate ligament (ACL) leads to long-lasting movement deficits or compensations to unload the injured knee. This study evaluated lower body kinematics during squats in individuals who suffered unilateral ACL-injury more than 20 years ago. METHOD: Using motion capture, we compared maximum squat depth, time to complete the squat task, detailed kinematics, estimated kinetic-chain joint moments 0- 80° knee flexion, and weight distribution between legs across three groups with (ACLR, n = 27) and without ACL-reconstructive surgery (ACLPT, physiotherapy only, n = 28), and age-matched non-injured asymptomatic Controls (n = 31, average age across groups 47 years). RESULTS: ACLPT demonstrated significantly reduced squat depth compared to Controls (p = 0.004), whereas ACLR performed similarly to Controls (p = 1.000). Other outcome variables were comparable between groups. All participants nevertheless demonstrated asymmetric weight distribution between legs but without systematic unloading of the injured side in the ACLgroups. CONCLUSION: Expected compensatory strategies were not found in the ACL-groups, while poorer squat performance in the ACL-deficient group may depend on pure knee-joint mechanics, or lifestyle factors attributed to a less stable knee decades after ACL-injury.


Assuntos
Lesões do Ligamento Cruzado Anterior , Reconstrução do Ligamento Cruzado Anterior , Humanos , Lesões do Ligamento Cruzado Anterior/fisiopatologia , Lesões do Ligamento Cruzado Anterior/cirurgia , Masculino , Feminino , Fenômenos Biomecânicos , Pessoa de Meia-Idade , Reconstrução do Ligamento Cruzado Anterior/métodos , Adulto , Articulação do Joelho/fisiopatologia , Amplitude de Movimento Articular/fisiologia , Movimento/fisiologia
5.
J Biomech ; 173: 112232, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39089220

RESUMO

Evaluating test-retest reliability is crucial in biomechanical research, as it validates experimental results. While methods for reliability of scalar outcome variables are well-established, methods to assess reliability of continuous curve data (such as joint angle trajectories during gait) remain less explored. This study investigates methods for constructing confidence sets for curve-level intraclass correlation coefficients (ICC), which can be expressed as either an ICC curve or an integrated ICC. Currently, no standardised guidelines exist in biomechanics for reporting curve-level ICC uncertainty. Nonparametric bootstrapping techniques are proposed for both the ICC curve's confidence bands and the integrated ICC's confidence intervals, and these methods are validated through Monte Carlo simulations, covering various effect sizes and curve characteristics. Additionally, these methods are applied to assess the test-retest reliability of knee kinematics in three different planes during landing of one-leg hops, where less uncertainty is observed for the ICC curve and integrated ICC in the frontal plane compared to other planes. When the entire time domain is of primary empirical interest, we recommend using a rank-based bootstrap confidence band to express ICC uncertainty, as it yields increasingly precise and valid results as the number of individuals increases, with the coverage rate approaching the correct level of 95%. When a single summary metric is of primary interest, we recommend using the integrated ICC along with a typical bootstrap confidence interval based on the normal distribution, as the coverage rate remains adequately accurate and stable at around the correct level of 95% across varying number of individuals.


Assuntos
Método de Monte Carlo , Humanos , Fenômenos Biomecânicos , Reprodutibilidade dos Testes , Masculino , Articulação do Joelho/fisiologia , Marcha/fisiologia , Feminino , Adulto
6.
Biometrics ; 68(2): 514-20, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22040115

RESUMO

A simple method to select a spatially balanced sample using equal or unequal inclusion probabilities is presented. For populations with spatial trends in the variables of interest, the estimation can be much improved by selecting samples that are well spread over the population. The method can be used for any number of dimensions and can hence also select spatially balanced samples in a space spanned by several auxiliary variables. Analysis and examples indicate that the suggested method achieves a high degree of spatial balance and is therefore efficient for populations with trends.


Assuntos
Biometria/métodos , Análise de Variância , Modelos Estatísticos , Dinâmica Populacional , Probabilidade , Tamanho da Amostra
7.
Sports Biomech ; 21(2): 179-200, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31578129

RESUMO

The purpose of this paper is to provide an overview of available methods for reliability investigations when the outcome of interest is a curve. Curve data, or functional data, is commonly collected in biomechanical research in order to better understand different aspects of human movement. Using recent statistical developments, curve data can be analysed in its most detailed form, as functions. However, an overview of appropriate statistical methods for assessing reliability of curve data is lacking. A review of contemporary literature of reliability measures for curve data within the fields of biomechanics and statistics identified the following methods: coefficient of multiple correlation, functional limits of agreement, measures of distance and similarity, and integrated pointwise indices (an extension of univariate reliability measures to curve data, inclusive of Pearson correlation, intraclass correlation, and standard error of measurement). These methods are briefly presented, implemented (R-code available as supplementary material) and evaluated on simulated data to highlight advantages and disadvantages of the methods. Among the identified methods, the integrated intraclass correlation and standard error of measurement are recommended. These methods are straightforward to implement, enable results over the domain, and consider variation between individuals, which the other methods partly neglect.


Assuntos
Movimento , Fenômenos Biomecânicos , Humanos , Reprodutibilidade dos Testes
8.
Am J Sports Med ; 50(8): 2125-2133, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35604127

RESUMO

BACKGROUND: An anterior cruciate ligament (ACL) rupture may result in poor sensorimotor knee control and, consequentially, adapted movement strategies to help maintain knee stability. Whether patients display atypical lower limb mechanics during weight acceptance of stair descent at different time frames after ACL reconstruction (ACLR) is unknown. PURPOSE: To compare the presence of atypical lower limb mechanics during the weight acceptance phase of stair descent among athletes at early, middle, and late time frames after unilateral ACLR. STUDY DESIGN: Controlled laboratory study. METHODS: A total of 49 athletes with ACLR were classified into 3 groups according to time after ACLR-early (<6 months; n = 17), middle (6-18 months; n = 16), and late (>18 months; n = 16)-and compared with asymptomatic athletes (control; n = 18). Sagittal plane hip, knee, and ankle angles; angular velocities; moments; and powers were compared between the ACLR groups' injured and noninjured legs and the control group as well as between legs within groups using functional data analysis methods. RESULTS: All 3 ACLR groups showed greater knee flexion angles and moments than the control group for injured and noninjured legs. For the other outcomes, the early group had, compared with the control group, less hip power absorption, more knee power absorption, lower ankle plantarflexion angle, lower ankle dorsiflexion moment, and less ankle power absorption for the injured leg and more knee power absorption and higher vertical ground reaction force for the noninjured leg. In addition, the late group showed differences from the control group for the injured leg revealing more knee power absorption and lower ankle plantarflexion angle. Only the early group took a longer time than the control group to complete weight acceptance and demonstrated asymmetry for multiple outcomes. CONCLUSION: Athletes with different time frames after ACLR revealed atypically large knee angles and moments during weight acceptance of stair descent for both the injured and the noninjured legs. These findings may express a chronically adapted strategy to increase knee control. In contrast, atypical hip and ankle mechanics seem restricted to an early time frame after ACLR. CLINICAL RELEVANCE: Rehabilitation after ACLR should include early training in controlling weight acceptance. Including a control group is essential when evaluating movement patterns after ACLR because both legs may be affected.


Assuntos
Lesões do Ligamento Cruzado Anterior , Reconstrução do Ligamento Cruzado Anterior , Lesões do Ligamento Cruzado Anterior/cirurgia , Reconstrução do Ligamento Cruzado Anterior/reabilitação , Fenômenos Biomecânicos , Humanos , Articulação do Joelho/cirurgia , Extremidade Inferior
9.
Sports Biomech ; 20(2): 213-229, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30526381

RESUMO

We propose a novel one-leg standardised rebound side-hop test (SRSH) specifically designed for detailed analysis of landing mechanics. Anterior cruciate ligament reconstructed persons (ACLR, n = 30) and healthy-knee controls (CTRL, n = 30) were tested for within-session and test-retest (CTRL only, n = 25) reliability and agreement. Trunk, hip and knee angles and moments in sagittal, frontal, and transversal planes during landing, including time to stabilisation (TTS), were evaluated using intra-class correlations (ICCs), average within-person standard deviations (SW) and minimal differences. Excellent within-session reliability were found for angles in both groups (most ICCs > 0.90, SW ≤ 5°), and excellent to good for moments (most ICCs > 0.80, SW ≤ 0.34 Nm/kg). Only knee internal rotation moment showed poor reliability (ICC < 0.4). Test-retest results were excellent to fair for all angles and moments (ICCs 0.47-0.91, SW < 5° and ≤ 0.25 Nm/kg), except for peak trunk lateral bending angle and knee internal rotation moment. TTS showed excellent to fair within-session reliability but poor test-retest results. These results, with a few exceptions, suggest promising potential of evaluating landing mechanics during the SRSH for ACLR and CTRL, and emphasise the importance of joint-specific movement control variables in standardised tasks.


Assuntos
Lesões do Ligamento Cruzado Anterior/cirurgia , Reconstrução do Ligamento Cruzado Anterior/reabilitação , Teste de Esforço/métodos , Quadril/fisiologia , Joelho/fisiologia , Tronco/fisiologia , Adulto , Lesões do Ligamento Cruzado Anterior/fisiopatologia , Fenômenos Biomecânicos , Estudos de Casos e Controles , Feminino , Humanos , Masculino , Movimento/fisiologia , Reprodutibilidade dos Testes , Rotação , Estudos de Tempo e Movimento , Adulto Jovem
10.
J Biomech ; 124: 110546, 2021 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-34171677

RESUMO

Motion capture systems enable in-depth interpretations of human movements based on data from three-dimensional joint angles and moments. Such analyses carry important bearings for evaluation of movement control during for instance hop landings among sports-active individuals from a performance perspective but also in rehabilitation. Recent statistical development allows analysis of entire time-series of angle and moment during hops using functional data analysis, but the reliability of such multifaceted data is not established. We used integrated pointwise indices (intra-class correlation, ICC; standard error of measurement, SEM) to establish the test-retest reliability of three-dimensional hip, knee and ankle angle and moment curves during landings of one-leg hop for distance (OLHD) in 23 asymptomatic individuals aged 18-28. We contrasted these findings to reliability of discrete variables extracted at specific events (initial contact, peak value). We extended the calculations of ICC and SEM to handle unbalanced situations (varying number of repetitions) to include all available data. Hip and knee angle curves proved reliable with stable ICC curves throughout the landing, with integrated ICCs ≥ 0.71 for all planes except for knee internal/external rotation (ICC = 0.57). Hip and knee moment curves and ankle angle and moments were less reliable and less stable, particularly in the first ~ 10-25% of the landing (integrated ICCs 0.44-0.57). Curve data were generally not in agreement with the results for discrete event data, thus advocating analysis of curve data which contains more information. To conclude, hip and knee angle curve data during OLHD landings can reliably be evaluated, while moment curves necessitate careful consideration.


Assuntos
Humulus , Tornozelo , Fenômenos Biomecânicos , Articulação do Quadril , Humanos , Cinética , Articulação do Joelho , Perna (Membro) , Movimento , Reprodutibilidade dos Testes
11.
Front Bioeng Biotechnol ; 9: 645014, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34055756

RESUMO

Three-dimensional human motion analysis provides in-depth understanding in order to optimize sports performance or rehabilitation following disease or injury. Recent developments of statistical methods for functional data allow for novel ways to analyze often complex biomechanical data. Even so, for such methods as well as for traditional well-established statistical methods, the interpretations of the results may be influenced by analysis choices made prior to the analysis. We evaluated the consequences of three such choices when comparing one-leg vertical hop (OLVH) performance in individuals who had ruptured their anterior cruciate ligament (ACL), to that of asymptomatic controls, and also athletes. Kinematic data were analyzed using a statistical approach for functional data, targeting entire curve data. This was done not only for one joint at a time but also for multiple lower limb joints and movement planes simultaneously using a multi-aspect methodology, testing for group differences while also accounting for covariates. We present the results of when an individual representative curve out of three available was either: (1) a mean curve (Mean), (2) a curve from the highest hop (Max), or (3) a curve describing the variability (Var), as a representation of performance stability. We also evaluated choice of sample leg comparison; e.g., ACL-injured leg compared to either the dominant or non-dominant leg of asymptomatic groups. Finally, we explored potential outcome effects of different combinations of included joints. There were slightly more pronounced group differences when using Mean compared to Max, while the specifics of the observed differences depended on the outcome variable. For Var there were less significant group differences. Generally, there were more disparities throughout the hop movement when comparing the injured leg to the dominant leg of controls, resulting in e.g., group differences for trunk and ankle kinematics, for both Mean and Max. When the injured leg was instead compared to the non-dominant leg of controls, there were trunk, hip and knee joint differences. For a more stringent comparison, we suggest considering to compare the injured leg to the non-dominant leg. Finally, the multiple-joint analyses were coherent with the single-joint analyses. The direct effects of analysis choices can be explored interactively by the reader in the Supplementary Material. To summarize, the choices definitively have an impact on the interpretation of a hop test results commonly used in rehabilitation following knee injuries. We therefore strongly recommend well-documented methodological analysis choices with regards to comparisons and representative values of the measures of interests.

12.
Front Hum Neurosci ; 15: 820104, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35282157

RESUMO

Background: Instrumented gait analysis post-stroke is becoming increasingly more common in research and clinics. Although overall standardized procedures are proposed, an almost infinite number of potential variables for kinematic analysis is generated and there remains a lack of consensus regarding which are the most important for sufficient evaluation. The current aim was to identify a discriminative core set of kinematic variables for gait post-stroke. Methods: We applied a three-step process of statistical analysis on commonly used kinematic gait variables comprising the whole body, derived from 3D motion data on 31 persons post-stroke and 41 non-disabled controls. The process of identifying relevant core sets involved: (1) exclusion of variables for which there were no significant group differences; (2) systematic investigation of one, or combinations of either two, three, or four significant variables whereby each core set was evaluated using a leave-one-out cross-validation combined with logistic regression to estimate a misclassification rate (MR). Results: The best MR for one single variable was shown for the Duration of single-support (MR 0.10) or Duration of 2nd double-support (MR 0.11) phase, corresponding to an 89-90% probability of correctly classifying a person as post-stroke/control. Adding Pelvis sagittal ROM to either of the variables Self-selected gait speed or Stride length, alternatively adding Ankle sagittal ROM to the Duration of single-stance phase, increased the probability of correctly classifying individuals to 93-94% (MR 0.06). Combining three variables decreased the MR further to 0.04, suggesting a probability of 96% for correct classification. These core sets contained: (1) a spatial (Stride/Step length) or a temporal variable (Self-selected gait speed/Stance time/Swing time or Duration of 2nd double-support), (2) Pelvis sagittal ROM or Ankle plantarflexion during push-off, and (3) Arm Posture Score or Cadence or a knee/shoulder joint angle variable. Adding a fourth variable did not further improve the MR. Conclusion: A core set combining a few crucial kinematic variables may sufficiently evaluate post-stroke gait and should receive more attention in rehabilitation. Our results may contribute toward a consensus on gait evaluation post-stroke, which could substantially facilitate future diagnosis and monitoring of rehabilitation progress.

13.
Gait Posture ; 82: 181-188, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32937270

RESUMO

BACKGROUND: Whole-body movement adjustments during gait are common post-stroke, but comprehensive ways of quantifying and evaluating gait from a whole-body perspective are lacking. RESEARCH QUESTION: Can novel kinematic variables related to Center of Mass (CoM) position discriminate side asymmetries as well as coordination between the upper and lower body during gait within persons post-stroke and compared to non-disabled controls? METHODS: Thirty-one persons post-stroke and 41 age-matched non-disabled controls walking at their self-selected speed were recorded by 3D motion capture. The Ankle-CoM Inclination Angle (A-CoMIA) and the Head-CoM Inclination Angle (H-CoMIA) defined the angle between the CoM and the ankle and the head, respectively, in the frontal plane. These angles and their angular velocities were compared between groups, and with regard to motor impairment severity during all phases of the gait cycle (GC) using a functional interval-wise testing analysis suitable for curve data. Upper and lower body coordination was assessed using cross- correlation. RESULTS: The A-CoMIA was symmetrical between body sides in persons post-stroke but larger compared to controls. The angular velocity of A-CoMIA also differed when compared to controls. The H-CoMIA was consistently asymmetrical in persons post-stroke and larger than in controls throughout the stance phase. There were only minor group differences in the angular velocity of H-CoMIA, with some side asymmetry in persons post-stroke. The A-CoMIA of the non-affected side, and the H- CoMIA, discriminated between persons with more severe impairments compared to those with milder impairments post-stroke. The variables showed strong cross- correlations in both groups. SIGNIFICANCE: The A-CoMIA and Head-CoMIA discriminated post-stroke gait from non-disabled, as well as motor impairment severity. These variables with the advantageous curve analysis during the entire GC add valuable whole-body information to existing parameters of post-stroke gait analysis through assessment of symmetry and upper and lower body coordination.


Assuntos
Tornozelo/anatomia & histologia , Fenômenos Biomecânicos/fisiologia , Análise da Marcha/métodos , Marcha/fisiologia , Cabeça/anatomia & histologia , Acidente Vascular Cerebral/fisiopatologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Análise de Dados , Feminino , Cabeça/fisiopatologia , Cabeça/efeitos da radiação , Humanos , Masculino , Pessoa de Meia-Idade
14.
Am J Sports Med ; 48(5): 1117-1126, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32168459

RESUMO

BACKGROUND: Atypical knee joint biomechanics after anterior cruciate ligament reconstruction (ACLR) are common. It is, however, unclear whether knee robustness (ability to tolerate perturbation and maintain joint configuration) and whole body movement strategies are compromised after ACLR. PURPOSE: To investigate landing control after ACLR with regard to dynamic knee robustness and whole body movement strategies during sports-mimicking side hops, and to evaluate functional performance of hop tests and knee strength. STUDY DESIGN: Controlled laboratory study. METHODS: An 8-camera motion capture system and 2 synchronized force plates were used to calculate joint angles and moments during standardized rebound side-hop landings performed by 32 individuals with an ACL-reconstructed knee (ACLR group; median, 16.0 months after reconstruction with hamstring tendon graft [interquartile range, 35.2 months]) and 32 matched asymptomatic controls (CTRL). Dynamic knee robustness was quantified using a finite helical axis approach, providing discrete values quantifying divergence of knee joint movements from flexion-extension (higher relative frontal and/or transverse plane motion equaled lower robustness) during momentary helical rotation intervals of 10°. Multivariate analyses of movement strategies included trunk, hip, and knee angles at initial contact and during landing and hip and knee peak moments during landing, comparing ACLR and CTRL, as well as legs within groups. RESULTS: Knee robustness was lower for the first 10° motion interval after initial contact and then successively stabilized for both groups and legs. When landing with the injured leg, the ACLR group, as compared with the contralateral leg and/or CTRL, demonstrated significantly greater flexion of the trunk, hip, and knee; greater hip flexion moment; less knee flexion moment; and smaller angle but greater moment of knee internal rotation. The ACLR group also had lower but acceptable hop and strength performances (ratios to noninjured leg >90%) except for knee flexion strength (12% deficit). CONCLUSION: Knee robustness was not affected by ACLR during side-hop landings, but alterations in movement strategies were seen for the trunk, hip, and knee, as well as long-term deficits in knee flexion strength. CLINICAL RELEVANCE: Knee robustness is lowest immediately after landing for both the ACLR group and the CTRL and should be targeted in training to reduce knee injury risk. Assessment of movement strategies during side-hop landings after ACLR should consider a whole body approach.


Assuntos
Lesões do Ligamento Cruzado Anterior , Ligamento Cruzado Anterior , Atividades Cotidianas , Ligamento Cruzado Anterior/cirurgia , Lesões do Ligamento Cruzado Anterior/cirurgia , Fenômenos Biomecânicos , Feminino , Humanos , Articulação do Joelho/cirurgia , Masculino , Movimento , Qualidade de Vida
15.
Knee ; 25(2): 226-239, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29525548

RESUMO

BACKGROUND: Anterior cruciate ligament (ACL) ruptures may lead to knee dysfunctions later in life. Single-leg tasks are often evaluated, but bilateral movements may also be compromised. Our aim was to use curve analyses to examine double-leg drop-jump kinematics in ACL-reconstructed, ACL-deficient, and healthy-knee cohorts. METHODS: Subjects with unilateral ACL ruptures treated more than two decades ago (17-28years) conservatively with physiotherapy (ACLPT, n=26) or in combination with reconstructive surgery (ACLR, n=28) and healthy-knee controls (n=25) performed 40-cm drop-jumps. Three-dimensional knee, hip, and trunk kinematics were analyzed during Rebound, Flight, and Landing phases. Curves were time-normalized and compared between groups (injured and non-injured legs of ACLPT and ACLR vs. non-dominant and dominant legs of controls) and within groups (between legs) using functional analysis of variance methods. RESULTS: Compared to controls, ACL groups exhibited less knee and hip flexion on both legs during Rebound and greater knee external rotation on their injured leg at the start of Rebound and Landing. ACLR also showed less trunk flexion during Rebound. Between-leg differences were observed in ACLR only, with the injured leg more internally rotated at the hip. Overall, kinematic curves were similar between ACLR and ACLPT. However, compared to controls, deviations spanned a greater proportion of the drop-jump movement at the hip in ACLR and at the knee in ACLPT. CONCLUSIONS: Trunk and bilateral leg kinematics during double-leg drop-jumps are still compromised long after ACL-rupture care, independent of treatment. Curve analyses indicate the presence of distinct compensatory mechanisms in ACLPT and ACLR compared to controls.


Assuntos
Lesões do Ligamento Cruzado Anterior/fisiopatologia , Teste de Esforço , Articulação do Quadril/fisiopatologia , Articulação do Joelho/fisiopatologia , Tronco/fisiopatologia , Lesões do Ligamento Cruzado Anterior/terapia , Fenômenos Biomecânicos/fisiologia , Estudos de Casos e Controles , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
16.
PLoS One ; 12(5): e0176247, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28459885

RESUMO

PURPOSE: Clinical test batteries for evaluation of knee function after injury to the Anterior Cruciate Ligament (ACL) should be valid and feasible, while reliably capturing the outcome of rehabilitation. There is currently a lack of consensus as to which of the many available assessment tools for knee function that should be included. The present aim was to use a statistical approach to investigate the contribution of frequently used tests to avoid redundancy, and filter them down to a proposed comprehensive and yet feasible test battery for long-term evaluation after ACL injury. METHODS: In total 48 outcome variables related to knee function, all potentially relevant for a long-term follow-up, were included from a cross-sectional study where 70 ACL-injured (17-28 years post injury) individuals were compared to 33 controls. Cluster analysis and logistic regression were used to group variables and identify an optimal test battery, from which a summarized estimator of knee function representing various functional aspects was derived. RESULTS: As expected, several variables were strongly correlated, and the variables also fell into logical clusters with higher within-correlation (max ρ = 0.61) than between clusters (max ρ = 0.19). An extracted test battery with just four variables assessing one-leg balance, isokinetic knee extension strength and hop performance (one-leg hop, side hop) were mathematically combined to an estimator of knee function, which acceptably classified ACL-injured individuals and controls. This estimator, derived from objective measures, correlated significantly with self-reported function, e.g. Lysholm score (ρ = 0.66; p<0.001). CONCLUSIONS: The proposed test battery, based on a solid statistical approach, includes assessments which are all clinically feasible, while also covering complementary aspects of knee function. Similar test batteries could be determined for earlier phases of ACL rehabilitation or to enable longitudinal monitoring. Such developments, established on a well-grounded consensus of measurements, would facilitate comparisons of studies and enable evidence-based rehabilitation.


Assuntos
Lesões do Ligamento Cruzado Anterior/diagnóstico , Avaliação da Deficiência , Joelho/fisiopatologia , Ruptura/diagnóstico , Ligamento Cruzado Anterior/fisiopatologia , Ligamento Cruzado Anterior/cirurgia , Lesões do Ligamento Cruzado Anterior/fisiopatologia , Lesões do Ligamento Cruzado Anterior/reabilitação , Lesões do Ligamento Cruzado Anterior/cirurgia , Reconstrução do Ligamento Cruzado Anterior , Análise por Conglomerados , Estudos Transversais , Interpretação Estatística de Dados , Estudos de Viabilidade , Feminino , Seguimentos , Humanos , Modelos Logísticos , Masculino , Pessoa de Meia-Idade , Recuperação de Função Fisiológica , Ruptura/fisiopatologia , Ruptura/reabilitação , Ruptura/cirurgia , Resultado do Tratamento
17.
Clin Biomech (Bristol, Avon) ; 30(10): 1153-61, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26365484

RESUMO

BACKGROUND: Despite interventions, anterior cruciate ligament ruptures can cause long-term deficits. To assist in identifying and treating deficiencies, 3D-motion analysis is used for objectivizing data. Conventional statistics are commonly employed to analyze kinematics, reducing continuous data series to discrete variables. Conversely, functional data analysis considers the entire data series. METHODS: Here, we employ functional data analysis to examine and compare the entire time-domain of knee-kinematic curves from one-leg hops between and within three groups. All subjects (n=95) were part of a long-term follow-up study involving anterior cruciate ligament ruptures treated ~20 years ago conservatively with physiotherapy only or with reconstructive surgery and physiotherapy, and matched knee-healthy controls. FINDINGS: Between-group differences (injured leg, treated groups; non-dominant leg, controls) were identified during the take-off and landing phases, and in the sagittal (flexion/extension) rather than coronal (abduction/adduction) and transverse (internal/external) planes. Overall, surgical and control groups demonstrated comparable knee-kinematic curves. However, compared to controls, the physiotherapy-only group exhibited less flexion during the take-off (0-55% of the normalized phase) and landing (44-73%) phase. Between-leg differences were absent in controls and the surgically treated group, but observed during the flight (4-22%, injured leg>flexion) and the landing (57-85%, injured leg

Assuntos
Lesões do Ligamento Cruzado Anterior , Traumatismos do Joelho/fisiopatologia , Entorses e Distensões/fisiopatologia , Adulto , Análise de Variância , Ligamento Cruzado Anterior/fisiopatologia , Fenômenos Biomecânicos , Estudos de Casos e Controles , Feminino , Seguimentos , Humanos , Traumatismos do Joelho/reabilitação , Articulação do Joelho/fisiopatologia , Masculino , Pessoa de Meia-Idade , Amplitude de Movimento Articular , Fatores de Tempo
18.
Gait Posture ; 40(1): 64-9, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24647039

RESUMO

In 3D gait analysis, quantification of leg movements is well established, whereas a measure of arm swing has been lacking. Recently, the Arm Posture Score (APS) was introduced to characterize arm movements in children with cerebral palsy, including information from four variables (APS4) in the sagittal and frontal planes. A potential limitation of the APS is that it does not include rotational movements and has not yet been evaluated with regard to gait speed. The aims of this study were (i) to investigate the effect on APS of adding two components of arm rotation (APS6) and (ii) to determine the influence of gait speed on the APS measures, when applied to non-disabled adults. Forty-two subjects walked 10 m at a self-selected speed (1.34 m/s), and in addition a subgroup of 28 subjects walked at a slow speed (0.66 m/s) set by a metronome. Data were collected from markers in a whole-body set up and by eight optoelectronic cameras. The results demonstrated significantly higher APS6 than APS4 values for both arms, irrespective of gait speed. Speed condition, whether self-selected or slow, had a significant effect on both APS measures. The two additional arm components are suggested to provide relevant information about arm swing during walking. However, APS6 needs to be implemented in gait analysis of individuals with gait arm pathologies in order to further examine its utility. We recommend that gait speed should to be taken into account when using APS measures to quantify arm swing during gait.


Assuntos
Braço/fisiologia , Marcha/fisiologia , Postura/fisiologia , Aceleração , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Modelos Biológicos , Movimento/fisiologia , Amplitude de Movimento Articular/fisiologia , Valores de Referência , Rotação , Caminhada/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA