Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Ecology ; 103(10): e3784, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35672930

RESUMO

Soil biota are critical drivers of plant growth, population dynamics, and community structure and thus have wide-ranging effects on ecosystem function. Interactions between plants and soil biota are complex, however, and can depend on the diversity and productivity of the plant community and environmental conditions. Plant-soil biota interactions may be especially important during stressful periods, such as drought, when plants can gain great benefits from beneficial biota but may be susceptible to antagonists. How soil biota respond to drought is also important and can influence plant growth following drought and leave legacies that affect future plant responses to soil biota and further drought. To explore how drought legacies and plant community context influence plant growth responses to soil biota and further drought, we collected soils from 12 grasslands varying in plant diversity and productivity where precipitation was experimentally reduced. We used these soils as inoculum in a growth chamber experiment testing how precipitation history (ambient or reduced) and soil biota (live or sterile soil inoculum) mediate plant growth and drought responses within an experimental plant community. We also tested whether these responses differed with the diversity and productivity of the community where the soil was collected. Plant growth responses to soil biota were positive when inoculated with soils from less diverse and productive plant communities and became negative as the diversity and productivity of the conditioning community increased. At low diversity, however, positive soil biota effects on plant growth were eliminated if precipitation had been reduced in the field, suggesting that diversity loss may heighten climate change sensitivity. Differences among species within the experimental community in their responses to soil biota and drought suggest that species benefitting from less drought sensitive soil biota may be able to compensate for some of this loss of productivity. Regardless of the plant species and soil origin, further drought eliminated any effects of soil biota on plant growth. Consequently, soil biota may be unable to buffer the effects of drought on primary productivity or other ecosystem functions as extreme events increase in frequency.


Assuntos
Ecossistema , Solo , Biota , Secas , Plantas , Solo/química , Microbiologia do Solo
2.
Sci Total Environ ; 776: 145730, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-33639460

RESUMO

Biodiversity drives ecosystem functioning across grassland ecosystems. However, few studies have examined how grazing intensity affects ecosystem multifunctionality (EMF) via its effects on plant diversity and soil microbial diversity in dry grasslands. We conducted a 12-year experiment manipulating sheep grazing intensity in a desert steppe of northern China. Through measuring plant species diversity, soil microbial diversity (bacteria diversity) and multiple ecosystem functions (i.e., aboveground net primary productivity, belowground biomass of plant community, temporal stability of ANPP, soil organic matter, moisture, available nitrogen and phosphorus, ecosystem respiration and gross ecosystem productivity), we aimed to understand how grazing intensity affected EMF via changing the diversity of plants and microbes. Our results showed that increasing grazing intensity significantly reduced EMF and most individual ecosystem functions, as well as the diversity of plants and microbes, while EMF and most individual functions were positively related to plant diversity and soil microbial diversity under all grazing intensities. In particular, soil microbial diversity in shallow soil layers (0-5 cm depth) had stronger positive correlations with plant diversity and EMF than in deeper soil layers. Furthermore, structural equation modeling (SEM) showed that grazing reduced EMF mainly via reducing plant diversity, rather than by reducing soil microbial diversity. Thus, plant diversity played a more important role in mediating the response of EMF to grazing disturbance. This study highlights the critical role of above- and belowground diversity in mediating the response of EMF to grazing intensity, which has important implications for biodiversity conservation and sustainability in arid grasslands.


Assuntos
Ecossistema , Solo , Animais , Biodiversidade , Biomassa , China , Pradaria , Plantas , Ovinos
3.
Microb Ecol ; 59(4): 724-33, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20082070

RESUMO

Septate endophytes proliferating in the roots of grasslands' plants shed doubts on the importance of arbuscular mycorrhizal (AM) symbioses in dry soils. The functionality and diversity of the AM symbioses formed in four replicates of three adjacent plant communities (agricultural, native, and restored) in Grasslands National Park, Canada were assessed in periods of moisture sufficiency and deficiency typical of early and late summer in the region. The community structure of AM fungi, as determined by polymerase chain reaction-denaturing gradient gel electrophoresis, varied with sampling time and plant community. Soil properties other than soil moisture did not change significantly with sampling time. The DNA sequences dominating AM extraradical networks in dry soil apparently belonged to rare taxa unreported in GenBank. DNA sequences of Glomus viscosum, Glomus mosseae, and Glomus hoi were dominant under conditions of moisture sufficiency. In total, nine different AM fungal sequences were found suggesting a role for the AM symbioses in semiarid areas. Significant positive linear relationships between plant P and N concentrations and active extraradical AM fungal biomass, estimated by the abundance of the phospholipid fatty acid marker 16:1 omega 5, existed under conditions of moisture sufficiency, but not under dry conditions. Active extraradical AM fungal biomass had significantly positive linear relationship with the abundance of two early season grasses, Agropyron cristatum (L.) Gaertn. and Koeleria gracilis Pers., but no relationship was found under dry conditions. The AM symbioses formed under conditions of moisture sufficiency typical of early summer at this location appear to be important for the nutrition of grassland plant communities, but no evidence of mutualism was found under the dry conditions of late summer.


Assuntos
Biodiversidade , Micorrizas/classificação , Poaceae/microbiologia , Microbiologia do Solo , Biomassa , Canadá , DNA Fúngico/análise , Ácidos Graxos/análise , Micorrizas/química , Micorrizas/genética , Fosfolipídeos/análise , Filogenia , Raízes de Plantas/microbiologia , Solo/análise , Simbiose , Fatores de Tempo
4.
Sci Total Environ ; 688: 231-242, 2019 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-31229820

RESUMO

Global climate change is expected to significantly influence soil respiration. When limited, rainfall and nitrogen (N) deposition strongly modify soil respiration in a broad range of biomes, but uncertainty remains with regards to the influence of the interactions of seasonal rainfall distribution and N deposition on soil respiration in an arid steppe. In the present study, we manipulated precipitation using V-shaped plexiglass gutters (minus 50%, control, and plus 50% treatments) and tested various N additions (control and plus 35 kg N ha-1 yr-1) to evaluate their impact on soil respiration, measured using a Li-Cor 8100, in a desert steppe in China. Increased precipitation stimulated soil respiration by 26.1%, while decreased precipitation significantly reduced soil respiration by 10.8%. There was a significant increase in soil respiration under N addition at 11.5%. Statistical assessment of their interactions demonstrated that N supplementation strengthened the stimulation of soil respiration under increased precipitation, whereas decreased precipitation offset the positive impact of N addition and led to a reduction in soil respiration. Contrasting interannual precipitation patterns strongly influenced the temporal changes in soil respiration as well as its response to N addition, indicating that the desert steppe plant community was co-limited by water and N. Net primary productivity (aboveground and belowground) predominantly drove soil respiration under altered precipitation and N addition. As grasses are better equipped for water deficit due to their previous exposure to long periods without water, there could be a shift from forb to grass communities under drier conditions. These findings highlight the importance of assessing the differential impacts of plant traits and soil physiochemical properties on soil respiration under altered precipitation and N addition.


Assuntos
Monitoramento Ambiental , Nitrogênio/análise , Carbono/análise , China , Mudança Climática , Clima Desértico , Ecossistema , Plantas , Poaceae , Chuva/química , Solo/química , Microbiologia do Solo , Água
5.
Ecol Evol ; 8(23): 12126-12139, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30598805

RESUMO

The objective of this study was to evaluate the drought tolerance, compensatory growth, and different plant traits between two native perennial caespitose grasses and two native rhizomatous grasses in response to drought and defoliation. A randomized complete block design at the Swift Current Research and Development Centre (SCRDC) of Agriculture and Agri-Food Canada (AAFC) examined the effects of water stress and clipping on the plant biomass, plant morphological traits, and relative leaf chlorophyll content (SPAD value) of four native grasses (caespitose grass: Hesperostipa comata and H. curtiseta; rhizomatous grass: Pascopyrum smithii and Elymus lanceolatus). Drought drastically decreased the shoot and root biomass, plant height, number of tillers and leaf growth of P. smithii and E. lanceolatus, as well as the rhizome biomass and R/S ratio of P. smithii. Defoliation had a positive effect on the shoot biomass of P. smithii and E. lanceolatus under well water treatments (100% and 85% of field capacity). However, the compensatory growth of P. smithii and E. lanceolatus significantly declined with increased water stress. In addition, there are no significant changes in plant biomass, plant height, number of tillers and leaves, and SPAD value of H. comata and H. curtiseta under relative dry condition (70% of field capacity). Consequently, these results demonstrated that the rhizomatous grasses possessed a stronger compensation in response to defoliation under wet conditions, but the positive effects of defoliation can be weakened by drought. The caespitose grasses (Hesperostipa species) exhibited a greater drought tolerance than rhizomatous grasses due to the relatively stable plant traits in response to water stress.

6.
PLoS One ; 12(5): e0177417, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28531235

RESUMO

Crested wheatgrass [Agropyron cristatum L. (Gaertn.)] is widely used for early spring grazing in western Canada and the development of late maturing cultivars which maintain forage quality for a longer period is desired. However, it is difficult to manipulate the timing of floral transition, as little is known about molecular mechanism of plant maturity in this species. In this study, RNA-Seq and differential gene expression analysis were performed to investigate gene expression for floral initiation and development in crested wheatgrass. Three cDNA libraries were generated and sequenced to represent three successive growth stages by sampling leaves at the stem elongation stage, spikes at boot and anthesis stages. The sequencing generated 25,568,846; 25,144,688 and 25,714,194 qualified Illumina reads for the three successive stages, respectively. De novo assembly of all the reads generated 311,671 transcripts with a mean length of 487 bp, and 152,849 genes with an average sequence length of 669 bp. A total of 48,574 (31.8%) and 105,222 (68.8%) genes were annotated in the Swiss-Prot and NCBI non-redundant (nr) protein databases, respectively. Based on the Kyoto Encyclopedia of Genes and Genome (KEGG) pathway database, 9,723 annotated sequences were mapped onto 298 pathways, including plant circadian clock pathway. Specifically, 113 flowering time-associated genes, 123 MADS-box genes and 22 CONSTANS-LIKE (COL) genes were identified. A COL homolog DN52048-c0-g4 which was clustered with the flowering time genes AtCO and OsHd1 in Arabidopsis (Arabidopsis thaliana L.) and rice (Oryza sativa L.), respectively, showed specific expression in leaves and could be a CONSTANS (CO) candidate gene. Taken together, this study has generated a new set of genomic resources for identifying and characterizing genes and pathways involved in floral transition and development in crested wheatgrass. These findings are significant for further understanding of the molecular basis for late maturity in this grass species.


Assuntos
Agropyron/fisiologia , Perfilação da Expressão Gênica/métodos , Proteínas de Plantas/genética , Análise de Sequência de RNA/métodos , Agropyron/genética , Flores/genética , Flores/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Biblioteca Gênica , Redes Reguladoras de Genes , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento
7.
Genes (Basel) ; 8(11)2017 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-29068370

RESUMO

Crested wheatgrass (Agropyron cristatum L.) breeding programs aim to develop later maturing cultivars for extending early spring grazing in Western Canada. Plant maturity is a complex genetic trait, and little is known about genes associated with late maturity in this species. An attempt was made using RNA-Seq to profile the transcriptome of crested wheatgrass maturity and to analyze differentially expressed genes (DEGs) between early and late maturing lines. Three cDNA libraries for each line were generated by sampling leaves at the stem elongation stage, spikes at the boot and anthesis stages. A total of 75,218,230 and 74,015,092 clean sequence reads were obtained for early and late maturing lines, respectively. De novo assembly of all sequence reads generated 401,587 transcripts with a mean length of 546 bp and N50 length of 691 bp. Out of 13,133 DEGs detected, 22, 17, and eight flowering related DEGs were identified for the three stages, respectively. Twelve DEGs, including nine flowering related DEGs at the stem elongation stage were further confirmed by qRT-PCR. The analysis of homologous genes of the photoperiod pathway revealed their lower expression in the late maturing line at the stem elongation stage, suggesting that their differential expression contributed to late maturity in crested wheatgrass.

8.
PLoS One ; 11(1): e0147987, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26808376

RESUMO

Soil respiration, a major component of the global carbon cycle, is significantly influenced by land management practices. Grasslands are potentially a major sink for carbon, but can also be a source. Here, we investigated the potential effect of land management (grazing, clipping, and ungrazed enclosures) on soil respiration in the semiarid grassland of northern China. Our results showed the mean soil respiration was significantly higher under enclosures (2.17 µmol.m(-2).s(-1)) and clipping (2.06 µmol.m(-2).s(-1)) than under grazing (1.65 µmol.m-(2).s(-1)) over the three growing seasons. The high rates of soil respiration under enclosure and clipping were associated with the higher belowground net primary productivity (BNPP). Our analyses indicated that soil respiration was primarily related to BNPP under grazing, to soil water content under clipping. Using structural equation models, we found that soil water content, aboveground net primary productivity (ANPP) and BNPP regulated soil respiration, with soil water content as the predominant factor. Our findings highlight that management-induced changes in abiotic (soil temperature and soil water content) and biotic (ANPP and BNPP) factors regulate soil respiration in the semiarid temperate grassland of northern China.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Poaceae , Solo , Mongólia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA