Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
New Phytol ; 240(5): 1788-1801, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37691289

RESUMO

Intervessel pits are considered to function as valves that avoid embolism spreading and optimize efficient transport of xylem sap across neighbouring vessels. Hydraulic transport between vessels would therefore follow a safety-efficiency trade-off, which is directly related to the total intervessel pit area (Ap ), inversely related to the pit membrane thickness (TPM ) and driven by a pressure difference. To test this hypothesis, we modelled the relative transport rate of gas (ka ) and water (Q) at the intervessel pit level for 23 angiosperm species and correlated these parameters with the water potential at which 50% of embolism occurs (Ψ50 ). We also measured ka for 10 species using pneumatic measurements. The pressure difference across adjacent vessels and estimated values of ka and Q were related to Ψ50 , following a convex safety-efficiency trade-off based on modelled and experimental data. Minor changes in TPM and Ap exponentially affected the pressure difference and flow, respectively. Our results provide clear evidence that a xylem safety-efficiency trade-off is not linear, but convex due to flow across intervessel pit membranes, which represent mesoporous media within microporous conduits. Moreover, the convex nature of long-distance xylem transport may contribute to an adjustable fluid balance of plants, depending on environmental conditions.


Assuntos
Embolia , Magnoliopsida , Plantas , Xilema , Água
2.
Proc Natl Acad Sci U S A ; 117(20): 10733-10739, 2020 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-32358185

RESUMO

Biological and technological processes that involve liquids under negative pressure are vulnerable to the formation of cavities. Maximal negative pressures found in plants are around -100 bar, even though cavitation in pure bulk water only occurs at much more negative pressures on the relevant timescales. Here, we investigate the influence of small solutes and lipid bilayers, both constituents of all biological liquids, on the formation of cavities under negative pressures. By combining molecular dynamics simulations with kinetic modeling, we quantify cavitation rates on biologically relevant length scales and timescales. We find that lipid bilayers, in contrast to small solutes, increase the rate of cavitation, which remains unproblematically low at the pressures found in most plants. Only when the negative pressures approach -100 bar does cavitation occur on biologically relevant timescales. Our results suggest that bilayer-based cavitation is what generally limits the magnitude of negative pressures in liquids that contain lipid bilayers.


Assuntos
Bicamadas Lipídicas/química , Simulação de Dinâmica Molecular , Pressão , Cinética
3.
Plant J ; 105(6): 1477-1494, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33295003

RESUMO

Lipids have been observed attached to lumen-facing surfaces of mature xylem conduits of several plant species, but there has been little research on their functions or effects on water transport, and only one lipidomic study of the xylem apoplast. Therefore, we conducted lipidomic analyses of xylem sap from woody stems of seven plants representing six major angiosperm clades, including basal magnoliids, monocots and eudicots, to characterize and quantify phospholipids, galactolipids and sulfolipids in sap using mass spectrometry. Locations of lipids in vessels of Laurus nobilis were imaged using transmission electron microscopy and confocal microscopy. Xylem sap contained the galactolipids di- and monogalactosyldiacylglycerol, as well as all common plant phospholipids, but only traces of sulfolipids, with total lipid concentrations in extracted sap ranging from 0.18 to 0.63 nmol ml-1 across all seven species. Contamination of extracted sap from lipids in cut living cells was found to be negligible. Lipid composition of sap was compared with wood in two species and was largely similar, suggesting that sap lipids, including galactolipids, originate from cell content of living vessels. Seasonal changes in lipid composition of sap were observed for one species. Lipid layers coated all lumen-facing vessel surfaces of L. nobilis, and lipids were highly concentrated in inter-vessel pits. The findings suggest that apoplastic, amphiphilic xylem lipids are a universal feature of angiosperms. The findings require a reinterpretation of the cohesion-tension theory of water transport to account for the effects of apoplastic lipids on dynamic surface tension and hydraulic conductance in xylem.


Assuntos
Lipídeos/análise , Magnoliopsida/química , Xilema/química , Galactolipídeos/análise , Galactolipídeos/metabolismo , Lipidômica , Magnoliopsida/genética , Magnoliopsida/metabolismo , Microscopia Confocal , Microscopia Eletrônica de Transmissão , Fosfolipídeos/análise , Fosfolipídeos/metabolismo , Filogenia , Estações do Ano , Xilema/metabolismo , Xilema/ultraestrutura
4.
New Phytol ; 235(3): 1032-1056, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35150454

RESUMO

Although the above and belowground sizes and shapes of plants strongly influence plant competition, community structure, and plant-environment interactions, plant sizes and shapes remain poorly characterized across climate regimes. We investigated relationships among shoot and root system size and climate. We assembled and analyzed, to our knowledge, the largest global database describing the maximum rooting depth, lateral spread, and shoot size of terrestrial plants - more than doubling the Root Systems of Individual Plants database to 5647 observations. Water availability and growth form greatly influence shoot size, and rooting depth is primarily influenced by temperature seasonality. Shoot size is the strongest predictor of lateral spread, with root system diameter being two times wider than shoot width on average for woody plants. Shoot size covaries strongly with rooting system size; however, the geometries of plants differ considerably across climates, with woody plants in more arid climates having shorter shoots, but deeper, narrower root systems. Additionally, estimates of the depth and lateral spread of plant root systems are likely underestimated at the global scale.


Assuntos
Raízes de Plantas , Plantas , Clima Desértico , Brotos de Planta , Água
5.
New Phytol ; 230(1): 27-45, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33206999

RESUMO

Although transpiration-driven transport of xylem sap is well known to operate under absolute negative pressure, many terrestrial, vascular plants show positive xylem pressure above atmospheric pressure on a seasonal or daily basis, or during early developmental stages. The actual location and mechanisms behind positive xylem pressure remain largely unknown, both in plants that show seasonal xylem pressure before leaf flushing, and those that show a diurnal periodicity of bleeding and guttation. Available evidence shows that positive xylem pressure can be driven based on purely physical forces, osmotic exudation into xylem conduits, or hydraulic pressure in parenchyma cells associated with conduits. The latter two mechanisms may not be mutually exclusive and can be understood based on a similar modelling scenario. Given the renewed interest in positive xylem pressure, this review aims to provide a constructive way forward by discussing similarities and differences of mechanistic models, evaluating available evidence for hydraulic functions, such as rehydration of tissues, refilling of water stores, and embolism repair under positive pressure, and providing recommendations for future research, including methods that avoid or minimise cutting artefacts.


Assuntos
Água , Xilema , Osmose , Folhas de Planta , Plantas
6.
New Phytol ; 230(5): 1829-1843, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33595117

RESUMO

Embolism spreading in angiosperm xylem occurs via mesoporous pit membranes between vessels. Here, we investigate how the size of pore constrictions in pit membranes is related to pit membrane thickness and embolism resistance. Pit membranes were modelled as multiple layers to investigate how pit membrane thickness and the number of intervessel pits per vessel determine pore constriction sizes, the probability of encountering large pores, and embolism resistance. These estimations were complemented by measurements of pit membrane thickness, embolism resistance, and number of intervessel pits per vessel in stem xylem (n = 31, 31 and 20 species, respectively). The modelled constriction sizes in pit membranes decreased with increasing membrane thickness, explaining the measured relationship between pit membrane thickness and embolism resistance. The number of pits per vessel affected constriction size and embolism resistance much less than pit membrane thickness. Moreover, a strong relationship between modelled and measured embolism resistance was observed. Pore constrictions provide a mechanistic explanation for why pit membrane thickness determines embolism resistance, which suggests that hydraulic safety can be uncoupled from hydraulic efficiency. Although embolism spreading remains puzzling and encompasses more than pore constriction sizes, angiosperms are unlikely to have leaky pit membranes, which enables tensile transport of water.


Assuntos
Embolia , Magnoliopsida , Constrição , Água , Xilema
7.
Plant Cell Environ ; 43(1): 116-130, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31595539

RESUMO

Pit membranes between xylem vessels play a major role in angiosperm water transport. Yet, their three-dimensional (3D) structure as fibrous porous media remains unknown, largely due to technical challenges and sample preparation artefacts. Here, we applied a modelling approach based on thickness measurements of fresh and fully shrunken pit membranes of seven species. Pore constrictions were also investigated visually by perfusing fresh material with colloidal gold particles of known sizes. Based on a shrinkage model, fresh pit membranes showed tiny pore constrictions of ca. 20 nm, but a very high porosity (i.e. pore volume fraction) of on average 0.81. Perfusion experiments showed similar pore constrictions in fresh samples, well below 50 nm based on transmission electron microscopy. Drying caused a 50% shrinkage of pit membranes, resulting in much smaller pore constrictions. These findings suggest that pit membranes represent a mesoporous medium, with the pore space characterized by multiple constrictions. Constrictions are much smaller than previously assumed, but the pore volume is large and highly interconnected. Pores do not form highly tortuous, bent, or zigzagging pathways. These insights provide a novel view on pit membranes, which is essential to develop a mechanistic, 3D understanding of air-seeding through this porous medium.


Assuntos
Magnoliopsida/ultraestrutura , Xilema/ultraestrutura , Acer/química , Transporte Biológico , Cinnamomum camphora/química , Constrição , Corylus/química , Fagus/química , Coloide de Ouro/química , Liriodendron/química , Microscopia Eletrônica de Transmissão , Persea/química , Populus/química , Porosidade , Água/fisiologia
8.
Plant Physiol ; 173(2): 1177-1196, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27927981

RESUMO

Vascular plants transport water under negative pressure without constantly creating gas bubbles that would disable their hydraulic systems. Attempts to replicate this feat in artificial systems almost invariably result in bubble formation, except under highly controlled conditions with pure water and only hydrophilic surfaces present. In theory, conditions in the xylem should favor bubble nucleation even more: there are millions of conduits with at least some hydrophobic surfaces, and xylem sap is saturated or sometimes supersaturated with atmospheric gas and may contain surface-active molecules that can lower surface tension. So how do plants transport water under negative pressure? Here, we show that angiosperm xylem contains abundant hydrophobic surfaces as well as insoluble lipid surfactants, including phospholipids, and proteins, a composition similar to pulmonary surfactants. Lipid surfactants were found in xylem sap and as nanoparticles under transmission electron microscopy in pores of intervessel pit membranes and deposited on vessel wall surfaces. Nanoparticles observed in xylem sap via nanoparticle-tracking analysis included surfactant-coated nanobubbles when examined by freeze-fracture electron microscopy. Based on their fracture behavior, this technique is able to distinguish between dense-core particles, liquid-filled, bilayer-coated vesicles/liposomes, and gas-filled bubbles. Xylem surfactants showed strong surface activity that reduces surface tension to low values when concentrated as they are in pit membrane pores. We hypothesize that xylem surfactants support water transport under negative pressure as explained by the cohesion-tension theory by coating hydrophobic surfaces and nanobubbles, thereby keeping the latter below the critical size at which bubbles would expand to form embolisms.


Assuntos
Fenômenos Biofísicos , Magnoliopsida/fisiologia , Modelos Biológicos , Tensoativos/metabolismo , Xilema/fisiologia , Técnica de Fratura por Congelamento , Glutaral/química , Magnoliopsida/ultraestrutura , Nanopartículas/química , Nanopartículas/ultraestrutura , Tetróxido de Ósmio/química , Exsudatos de Plantas/metabolismo , Pressão , Tensão Superficial , Xilema/ultraestrutura
9.
Am J Bot ; 105(2): 172-185, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29578294

RESUMO

PREMISE OF THE STUDY: Xylem sap in angiosperms moves under negative pressure in conduits and cell wall pores that are nanometers to micrometers in diameter, so sap is always very close to surfaces. Surfaces matter for water transport because hydrophobic ones favor nucleation of bubbles, and surface chemistry can have strong effects on flow. Vessel walls contain cellulose, hemicellulose, lignin, pectins, proteins, and possibly lipids, but what is the nature of the inner, lumen-facing surface that is in contact with sap? METHODS: Vessel lumen surfaces of five angiosperms from different lineages were examined via transmission electron microscopy and confocal and fluorescence microscopy, using fluorophores and autofluorescence to detect cell wall components. Elemental composition was studied by energy-dispersive X-ray spectroscopy, and treatments with phospholipase C (PLC) were used to test for phospholipids. KEY RESULTS: Vessel surfaces consisted mainly of lignin, with strong cellulose signals confined to pit membranes. Proteins were found mainly in inter-vessel pits and pectins only on outer rims of pit membranes and in vessel-parenchyma pits. Continuous layers of lipids were detected on most vessel surfaces and on most pit membranes and were shown by PLC treatment to consist at least partly of phospholipids. CONCLUSIONS: Vessel surfaces appear to be wettable because lignin is not strongly hydrophobic and a coating with amphiphilic lipids would render any surface hydrophilic. New questions arise about these lipids and their possible origins from living xylem cells, especially about their effects on surface tension, surface bubble nucleation, and pit membrane function.


Assuntos
Magnoliopsida/ultraestrutura , Xilema/ultraestrutura , Parede Celular/fisiologia , Parede Celular/ultraestrutura , Lignina/metabolismo , Magnoliopsida/fisiologia , Lipídeos de Membrana/metabolismo , Microscopia Confocal , Microscopia Eletrônica de Transmissão , Microscopia de Fluorescência , Propriedades de Superfície , Água/metabolismo , Xilema/fisiologia
11.
Plant Cell Environ ; 39(4): 944-50, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26868162

RESUMO

A new method is described for measuring dissolved gas concentrations in small volumes of xylem sap using membrane inlet mass spectrometry. The technique can be used to determine concentrations of atmospheric gases, such as argon, as reported here, or for any dissolved gases and their isotopes for a variety of applications, such as rapid detection of trace gases from groundwater only hours after they were taken up by trees and rooting depth estimation. Atmospheric gas content in xylem sap directly affects the conditions and mechanisms that allow for gas removal from xylem embolisms, because gas can dissolve into saturated or supersaturated sap only under gas pressure that is above atmospheric pressure. The method was tested for red trumpet vine, Distictis buccinatoria (Bignoniaceae), by measuring atmospheric gas concentrations in sap collected at times of minimum and maximum daily temperature and during temperature increase and decline. Mean argon concentration in xylem sap did not differ significantly from saturation levels for the temperature and pressure conditions at any time of collection, but more than 40% of all samples were supersaturated, especially during the warm parts of day. There was no significant diurnal pattern, due to high variability between samples.


Assuntos
Atmosfera/química , Gases/análise , Espectrometria de Massas/métodos , Membranas Artificiais , Exsudatos de Plantas/química , Xilema/química , Argônio/análise , Caules de Planta/fisiologia , Pressão , Solubilidade , Temperatura , Água
12.
AoB Plants ; 16(4): plae040, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39119045

RESUMO

Bamboos stand out among other tall plants in being able to generate positive pressure in the xylem at night, pushing water up to the leaves and causing drops to fall from leaf tips as guttation that can amount to a steady nocturnal 'bamboo rain'. The location and mechanism of nocturnal pressure generation in bamboos are unknown, as are the benefits for the plants. We conducted a study on the tall tropical bamboo species Bambusa oldhamii (giant timber bamboo) growing outdoors in southern California under full irrigation to determine where in the plant the nocturnal pressure is generated, when it rises in the evening, and when it dissipates in the morning. We hypothesized that the build-up of positive pressure would be triggered by the cessation of transpiration-driven sap flow and that resumption of sap flow in the morning would cause the pressure to dissipate. Nocturnal pressure was observed in mature stems and rhizomes, but never in roots. The pressure was episodic and associated with stem swelling and was usually, but not always, higher in rhizomes and basal stems than in stems at greater height. Time series analyses revealed that dry atmospheric conditions were followed by lower nocturnal pressure and rainfall events by higher stem pressure. Nocturnal pressure was unrelated to sap flow and even was generated for a short time in isolated stem pieces placed in water. We conclude that nocturnal pressure in bamboo is not 'root pressure' but is generated in the pseudo-woody rhizomes and stems. It is unrelated to the presence or absence of sap flow and therefore must be created outside of vessels, such as in phloem, parenchyma, or fibres. It is unlikely to be a drought adaptation and may benefit the plants by maximizing stem water storage for daytime transpiration or by transporting nutrients to the leaves.

13.
Tree Physiol ; 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39190893

RESUMO

Given the pressing challenges posed by climate change, it is crucial to develop a deeper understanding of the impacts of escalating drought and heat stress on terrestrial ecosystems and the vital services they offer. Soil and plant water potential play a pivotal role in governing the dynamics of water within ecosystems and exert direct control over plant function and mortality risk during periods of ecological stress. However, existing observations of water potential suffer from significant limitations, including their sporadic and discontinuous nature, inconsistent representation of relevant spatio-temporal scales, and numerous methodological challenges. These limitations hinder the comprehensive and synthetic research needed to enhance our conceptual understanding and predictive models of plant function and survival under limited moisture availability. In this article, we present PSInet (PSI-for the Greek letter Ψ used to denote water potential), a novel collaborative network of researchers and data, designed to bridge the current critical information gap in water potential data. The primary objectives of PSInet are: (1) Establishing the first openly accessible global database for time series of plant and soil water potential measurements, while providing important linkages with other relevant observation networks. (2) Fostering an inclusive and diverse collaborative environment for all scientists studying water potential in various stages of their careers. (3) Standardizing methodologies, processing, and interpretation of water potential data through the engagement of a global community of scientists, facilitated by the dissemination of standardized protocols, best practices, and early career training opportunities. (4) Facilitating the use of the PSInet database for synthesizing knowledge and addressing prominent gaps in our understanding of plants' physiological responses to various environmental stressors. The PSInet initiative is integral to meeting the fundamental research challenge of discerning which plant species will thrive and which will be vulnerable in a world undergoing rapid warming and increasing aridification.

14.
Nanomaterials (Basel) ; 13(11)2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37299679

RESUMO

One of the more surprising occurrences of bulk nanobubbles is in the sap inside the vascular transport system of flowering plants, the xylem. In plants, nanobubbles are subjected to negative pressure in the water and to large pressure fluctuations, sometimes encompassing pressure changes of several MPa over the course of a single day, as well as wide temperature fluctuations. Here, we review the evidence for nanobubbles in plants and for polar lipids that coat them, allowing nanobubbles to persist in this dynamic environment. The review addresses how the dynamic surface tension of polar lipid monolayers allows nanobubbles to avoid dissolution or unstable expansion under negative liquid pressure. In addition, we discuss theoretical considerations about the formation of lipid-coated nanobubbles in plants from gas-filled spaces in the xylem and the role of mesoporous fibrous pit membranes between xylem conduits in creating the bubbles, driven by the pressure gradient between the gas and liquid phase. We discuss the role of surface charges in preventing nanobubble coalescence, and conclude by addressing a number of open questions about nanobubbles in plants.

15.
Tree Physiol ; 42(10): 2003-2019, 2022 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-35552762

RESUMO

In previous research, xylem sap of angiosperms has been found to include low concentrations of nanoparticles and polar lipids. A major goal of this study was to test predictions arising from the hypothesis that the nanoparticles consist largely of polar lipids from the original cell content of vessel elements. These predictions included that polar lipid and nanoparticle concentrations would be correlated, that they both do not pass through pit membranes and that they do not vary seasonally because they originate from living vessel element cells. We collected xylem sap of six temperate angiosperm species over the whole year to consider seasonal variation. Concentrations of nanoparticles and lipids in xylem sap and contamination control samples were measured with a NanoSight device and mass spectrometry. We found that the concentration of nanoparticles and polar lipids was (i) diluted when an increasing amount of sap was extracted, (ii) significantly correlated to each other for three species, (iii) affected by vessel anatomy, (iv) very low and largely different in chemical composition from contamination controls and (v) hardly variable among seasons. Moreover, there was a minor freezing-thawing effect with respect to nanoparticle amount and size. Xylem sap lipids included polar galactolipids and phospholipids in all species and neutral triacylglycerols in two species. These findings support the predictions and, by implication, the underlying hypothesis that nanoparticles in xylem sap consist of polar lipids from the original cell content of living vessel element cells. Further research is needed to examine the formation and stability of nanoparticles concerning lipid composition and multiphase interactions among gas, liquid and solid phases in xylem conduits of living plants.


Assuntos
Magnoliopsida , Nanopartículas , Galactolipídeos/análise , Galactolipídeos/metabolismo , Magnoliopsida/metabolismo , Triglicerídeos/análise , Triglicerídeos/metabolismo , Água/metabolismo , Xilema/metabolismo
16.
J Exp Bot ; 62(3): 1119-32, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21147811

RESUMO

The maximum specific hydraulic conductivity (k(max)) of a plant sample is a measure of the ability of a plants' vascular system to transport water and dissolved nutrients under optimum conditions. Precise measurements of k(max) are needed in comparative studies of hydraulic conductivity, as well as for measuring the formation and repair of xylem embolisms. Unstable measurements of k(max) are a common problem when measuring woody plant samples and it is commonly observed that k(max) declines from initially high values, especially when positive water pressure is used to flush out embolisms. This study was designed to test five hypotheses that could potentially explain declines in k(max) under positive pressure: (i) non-steady-state flow; (ii) swelling of pectin hydrogels in inter-vessel pit membranes; (iii) nucleation and coalescence of bubbles at constrictions in the xylem; (iv) physiological wounding responses; and (v) passive wounding responses, such as clogging of the xylem by debris. Prehydrated woody stems from Laurus nobilis (Lauraceae) and Encelia farinosa (Asteraceae) collected from plants grown in the Fullerton Arboretum in Southern California, were used to test these hypotheses using a xylem embolism meter (XYL'EM). Treatments included simultaneous measurements of stem inflow and outflow, enzyme inhibitors, stem-debarking, low water temperatures, different water degassing techniques, and varied concentrations of calcium, potassium, magnesium, and copper salts in aqueous measurement solutions. Stable measurements of k(max) were observed at concentrations of calcium, potassium, and magnesium salts high enough to suppress bubble coalescence, as well as with deionized water that was degassed using a membrane contactor under strong vacuum. Bubble formation and coalescence under positive pressure in the xylem therefore appear to be the main cause for declining k(max) values. Our findings suggest that degassing of water is essential for achieving stable and precise measurements of k(max) through woody plant samples. For complete rehydration of woody samples, incubation in water under vacuum for 24 h is suggested as a reliable technique that avoids bubble problems associated with flushing under high positive pressure.


Assuntos
Asteraceae/química , Laurus/química , Madeira/química , Asteraceae/metabolismo , Transporte Biológico , Pressão Hidrostática , Cinética , Laurus/metabolismo , Água/metabolismo , Madeira/metabolismo
17.
Am J Bot ; 98(5): 915-22, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21613189

RESUMO

PREMISE OF THE STUDY: Trees and shrubs tend to occupy different niches within and across ecosystems; therefore, traits related to their resource use and life history are expected to differ. Here we analyzed how growth form is related to variation in integration among vessel traits, wood density, and height. We also considered the ecological and evolutionary consequences of such differences. METHOD: In a sample of 200 woody plant species (65 shrubs and 135 trees) from Argentina, Mexico, and the United States, standardized major axis (SMA) regression, correlation analyses, and ANOVA were used to determine whether relationships among traits differed between growth forms. The influence of phylogenetic relationships was examined with a phylogenetic ANOVA and phylogenetically independent contrasts (PICs). A principal component analysis was conducted to determine whether trees and shrubs occupy different portions of multivariate trait space. KEY RESULTS: Wood density did not differ between shrubs and trees, but there were significant differences in vessel diameter, vessel density, theoretical conductivity, and as expected, height. In addition, relationships between vessel traits and wood density differed between growth forms. Trees showed coordination among vessel traits, wood density, and height, but in shrubs, wood density and vessel traits were independent. These results hold when phylogenetic relationships were considered. In the multivariate analyses, these differences translated as significantly different positions in multivariate trait space occupied by shrubs and trees. CONCLUSIONS: Differences in trait integration between growth forms suggest that evolution of growth form in some lineages might be associated with the degree of trait interrelation.


Assuntos
Magnoliopsida/anatomia & histologia , Madeira/anatomia & histologia , Argentina , Evolução Biológica , Magnoliopsida/crescimento & desenvolvimento , México , Análise Multivariada , Filogenia , Análise de Componente Principal , Árvores/anatomia & histologia , Árvores/crescimento & desenvolvimento , Estados Unidos , Madeira/crescimento & desenvolvimento
18.
Proc Natl Acad Sci U S A ; 105(32): 11248-53, 2008 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-18678893

RESUMO

Both engineered hydraulic systems and plant hydraulic systems are protected against failure by resistance, reparability, and redundancy. A basic rule of reliability engineering is that the level of independent redundancy should increase with increasing risk of fatal system failure. Here we show that hydraulic systems of plants function as predicted by this engineering rule. Hydraulic systems of shrubs sampled along two transcontinental aridity gradients changed with increasing aridity from highly integrated to independently redundant modular designs. Shrubs in humid environments tend to be hydraulically integrated, with single, round basal stems, whereas dryland shrubs typically have modular hydraulic systems and multiple, segmented basal stems. Modularity is achieved anatomically at the vessel-network scale or developmentally at the whole-plant scale through asymmetric secondary growth, which results in a semiclonal or clonal shrub growth form that appears to be ubiquitous in global deserts.


Assuntos
Ecossistema , Desenvolvimento Vegetal , Fenômenos Fisiológicos Vegetais , Fenômenos Biomecânicos/métodos , Clima Desértico
20.
Tree Physiol ; 40(4): 433-444, 2020 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-32031666

RESUMO

The surface tension of xylem sap has been traditionally assumed to be close to that of the pure water because decreasing surface tension is thought to increase vulnerability to air seeding and embolism. However, xylem sap contains insoluble lipid-based surfactants, which also coat vessel and pit membrane surfaces, where gas bubbles can enter xylem under negative pressure in the process known as air seeding. Because of the insolubility of amphiphilic lipids, the surface tension influencing air seeding in pit pores is not the equilibrium surface tension of extracted bulk sap but the local surface tension at gas-liquid interfaces, which depends dynamically on the local concentration of lipids per surface area. To estimate the dynamic surface tension in lipid layers that line surfaces in the xylem apoplast, we studied the time-dependent and surface area-regulated surface tensions of apoplastic lipids extracted from xylem sap of four woody angiosperm plants using constrained drop surfactometry. Xylem lipids were found to demonstrate potent surface activity, with surface tensions reaching an equilibrium at ~25 mN m-1 and varying between a minimum of 19 mN m-1 and a maximum of 68 mN m-1 when changing the surface area between 50 and 160% around the equilibrium surface area. It is concluded that xylem lipid films in natural conditions most likely range from nonequilibrium metastable conditions of a supersaturated compression state to an undersaturated expansion state, depending on the local surface areas of gas-liquid interfaces. Together with findings that maximum pore constrictions in angiosperm pit membranes are much smaller than previously assumed, low dynamic surface tension in xylem turns out to be entirely compatible with the cohesion-tension and air-seeding theories, as well as with the existence of lipid-coated nanobubbles in xylem sap, and with the range of vulnerabilities to embolism observed in plants.


Assuntos
Lipídeos , Xilema , Pressão , Tensão Superficial , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA