Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Transl Med ; 22(1): 234, 2024 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-38433235

RESUMO

INTRODUCTION: The study of resistance-causing mutations in oncogene-driven tumors is fundamental to guide clinical decisions. Several point mutations affecting the ROS1 kinase domain have been identified in the clinical setting, but their impact requires further exploration, particularly in improved pre-clinical models. Given the scarcity of solid pre-clinical models to approach rare cancer subtypes like ROS1 + NSCLC, CRISPR/Cas9 technology allows the introduction of mutations in patient-derived cell lines for which resistant variants are difficult to obtain due to the low prevalence of cases within the clinical setting. METHODS: In the SLC34A2-ROS1 rearranged NSCLC cell line HCC78, we knocked-in through CRISPR/Cas9 technology three ROS1 drug resistance-causing mutations: G2032R, L2026M and S1986Y. Such variants are located in different functional regions of the ROS1 kinase domain, thus conferring TKI resistance through distinct mechanisms. We then performed pharmacological assays in 2D and 3D to assess the cellular response of the mutant lines to crizotinib, entrectinib, lorlatinib, repotrectinib and ceritinib. In addition, immunoblotting assays were performed in 2D-treated cell lines to determine ROS1 phosphorylation and MAP kinase pathway activity. The area over the curve (AOC) defined by the normalized growth rate (NGR_fit) dose-response curves was the variable used to quantify the cellular response towards TKIs. RESULTS: Spheroids derived from ROS1G2032R cells were significantly more resistant to repotrectinib (AOC fold change = - 7.33), lorlatinib (AOC fold change = - 6.17), ceritinib (AOC fold change = - 2.8) and entrectinib (AOC fold change = - 2.02) than wild type cells. The same cells cultured as a monolayer reflected the inefficacy of crizotinib (AOC fold change = - 2.35), entrectinib (AOC fold change = - 2.44) and ceritinib (AOC fold change = - 2.12) in targeting the ROS1 G2032R mutation. ROS1L2026M cells showed also remarkable resistance both in monolayer and spheroid culture compared to wild type cells, particularly against repotrectinib (spheroid AOC fold change = - 2.19) and entrectinib (spheroid AOC fold change = - 1.98). ROS1S1986Y cells were resistant only towards crizotinib in 2D (AOC fold change = - 1.86). Overall, spheroids showed an increased TKI sensitivity compared to 2D cultures, where the impact of each mutation that confers TKI resistance could be clearly distinguished. Western blotting assays qualitatively reflected the patterns of response towards TKI observed in 2D culture through the levels of phosphorylated-ROS1. However, we observed a dose-response increase of phosphorylated-Erk1/2, suggesting the involvement of the MAPK pathway in the mediation of apoptosis in HCC78 cells. CONCLUSION: In this study we knock-in for the first time in a ROS1 + patient-derived cell line, three different known resistance-causing mutations using CRISPR/Cas9 in the endogenous translocated ROS1 alleles. Pharmacological assays performed in 2D and 3D cell culture revealed that spheroids are more sensitive to TKIs than cells cultured as a monolayer. This direct comparison between two culture systems could be done thanks to the implementation of normalized growth rates (NGR) to uniformly quantify drug response between 2D and 3D cell culture. Overall, this study presents the added value of using spheroids and positions lorlatinib and repotrectinib as the most effective TKIs against the studied ROS1 resistance point mutations.


Assuntos
Aminopiridinas , Benzamidas , Carcinoma Pulmonar de Células não Pequenas , Indazóis , Lactamas , Neoplasias Pulmonares , Pirazóis , Pirimidinas , Sulfonas , Humanos , Proteínas Tirosina Quinases/genética , Crizotinibe , Sistemas CRISPR-Cas/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Proteínas Proto-Oncogênicas , Resistência a Medicamentos
2.
Int J Mol Sci ; 22(22)2021 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-34830117

RESUMO

Disease relapse and therapy resistance remain key challenges in treating multiple myeloma. Underlying (epi-)mutational events can promote myelomagenesis and contribute to multi-drug and apoptosis resistance. Therefore, compounds inducing ferroptosis, a form of iron and lipid peroxidation-regulated cell death, are appealing alternative treatment strategies for multiple myeloma and other malignancies. Both ferroptosis and the epigenetic machinery are heavily influenced by oxidative stress and iron metabolism changes. Yet, only a limited number of epigenetic enzymes and modifications have been identified as ferroptosis regulators. In this study, we found that MM1 multiple myeloma cells are sensitive to ferroptosis induction and epigenetic reprogramming by RSL3, irrespective of their glucocorticoid-sensitivity status. LC-MS/MS analysis revealed the formation of non-heme iron-histone complexes and altered expression of histone modifications associated with DNA repair and cellular senescence. In line with this observation, EPIC BeadChip measurements of significant DNA methylation changes in ferroptotic myeloma cells demonstrated an enrichment of CpG probes located in genes associated with cell cycle progression and senescence, such as Nuclear Receptor Subfamily 4 Group A member 2 (NR4A2). Overall, our data show that ferroptotic cell death is associated with an epigenomic stress response that might advance the therapeutic applicability of ferroptotic compounds.


Assuntos
Senescência Celular , Metilação de DNA , DNA de Neoplasias/metabolismo , Ferroptose , Histonas/metabolismo , Mieloma Múltiplo/metabolismo , Proteínas de Neoplasias/metabolismo , Código das Histonas , Humanos , Mieloma Múltiplo/patologia
3.
Mol Genet Genomics ; 294(4): 1001-1006, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30968248

RESUMO

Otosclerosis is a common form of hearing loss (HL) due to abnormal remodeling of the otic capsule. The genetic causes of otosclerosis remain largely unidentified. Only mutations in a single gene, SERPINF1, were previously published in patients with familial otosclerosis. To unravel the contribution of genetic variation in this gene to otosclerosis, this gene was re-sequenced in a large population of otosclerosis patients and controls. Resequencing of the 5' and 3' UTRs, coding regions, and exon-intron boundaries of SERPINF1 was performed in 1604 unrelated otosclerosis patients and 1538 unscreened controls, and in 62 large otosclerosis families. Our study showed no enrichment of rare variants, stratified by type, in SERPINF1 in patients versus controls. Furthermore, the c.392C > A (p.Ala131Asp) variant, previously reported as pathogenic, was identified in three patients and four controls, not replicating its pathogenic nature. We could also not find evidence for a pathogenic role in otosclerosis for 5' UTR variants in the SERPINF1-012 transcript (ENST00000573763), described as the major transcript in human stapes. Furthermore, no rare variants were identified in the otosclerosis families. This study does not support a pathogenic role for variants in SERPINF1 as a cause of otosclerosis. Therefore, the etiology of the disease remains largely unknown and will undoubtedly be the focus of future studies.


Assuntos
Proteínas do Olho/genética , Fatores de Crescimento Neural/genética , Otosclerose/genética , Análise de Sequência de DNA/métodos , Serpinas/genética , Regiões 3' não Traduzidas , Regiões 5' não Traduzidas , Estudos de Casos e Controles , Feminino , Humanos , Masculino , Linhagem
4.
Genet Med ; 21(5): 1199-1208, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30287925

RESUMO

PURPOSE: To characterize new molecular factors implicated in a hereditary congenital facial paresis (HCFP) family and otosclerosis. METHODS: We performed exome sequencing in a four-generation family presenting nonprogressive HCFP and mixed hearing loss (HL). MEPE was analyzed using either Sanger sequencing or molecular inversion probes combined with massive parallel sequencing in 89 otosclerosis families, 1604 unrelated affected subjects, and 1538 unscreened controls. RESULTS: Exome sequencing in the HCFP family led to the identification of a rare segregating heterozygous frameshift variant p.(Gln425Lysfs*38) in MEPE. As the HL phenotype in this family resembled otosclerosis, we performed variant burden and variance components analyses in a large otosclerosis cohort and demonstrated that nonsense and frameshift MEPE variants were significantly enriched in affected subjects (p = 0.0006-0.0060). CONCLUSION: MEPE exerts its function in bone homeostasis by two domains, an RGD and an acidic serine aspartate-rich MEPE-associated (ASARM) motif inhibiting respectively bone resorption and mineralization. All variants associated with otosclerosis are predicted to result in nonsense mediated decay or an ASARM-and-RGD-truncated MEPE. The HCFP variant is predicted to produce an ASARM-truncated MEPE with an intact RGD motif. This difference in effect on the protein corresponds with the presumed pathophysiology of both diseases, and provides a plausible molecular explanation for the distinct phenotypic outcome.


Assuntos
Proteínas da Matriz Extracelular/genética , Paralisia Facial/congênito , Glicoproteínas/genética , Otosclerose/genética , Fosfoproteínas/genética , Adulto , Osso e Ossos/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Paralisia Facial/etiologia , Paralisia Facial/genética , Paralisia Facial/metabolismo , Família , Feminino , Doenças Genéticas Ligadas ao Cromossomo X/genética , Variação Genética/genética , Glicoproteínas/metabolismo , Perda Auditiva/genética , Heterozigoto , Humanos , Masculino , Linhagem , Fenótipo , Fosfoproteínas/metabolismo , Sequenciamento do Exoma/métodos
5.
Clin Epigenetics ; 15(1): 111, 2023 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-37415235

RESUMO

BACKGROUND: Biomarker discovery in colorectal cancer has mostly focused on methylation patterns in normal and colorectal tumor tissue, but adenomas remain understudied. Therefore, we performed the first epigenome-wide study to profile methylation of all three tissue types combined and to identify discriminatory biomarkers. RESULTS: Public methylation array data (Illumina EPIC and 450K) were collected from a total of 1 892 colorectal samples. Pairwise differential methylation analyses between tissue types were performed for both array types to "double evidence" differentially methylated probes (DE DMPs). Subsequently, the identified DMPs were filtered on methylation level and used to build a binary logistic regression prediction model. Focusing on the clinically most interesting group (adenoma vs carcinoma), we identified 13 DE DMPs that could effectively discriminate between them (AUC = 0.996). We validated this model in an in-house experimental methylation dataset of 13 adenomas and 9 carcinomas. It reached a sensitivity and specificity of 96% and 95%, respectively, with an overall accuracy of 96%. Our findings raise the possibility that the 13 DE DMPs identified in this study can be used as molecular biomarkers in the clinic. CONCLUSIONS: Our analyses show that methylation biomarkers have the potential to discriminate between normal, precursor and carcinoma tissues of the colorectum. More importantly, we highlight the power of the methylome as a source of markers for discriminating between colorectal adenomas and carcinomas, which currently remains an unmet clinical need.


Assuntos
Adenoma , Neoplasias Colorretais , Epigenoma , Metilação de DNA , Humanos , Neoplasias Colorretais/genética , Adenoma/genética , Biomarcadores Tumorais/genética , Estudo de Associação Genômica Ampla
6.
J Vis ; 12(6): 13, 2012 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-22693331

RESUMO

A visual target is more difficult to recognize when it is surrounded by other, similar objects. This breakdown in object recognition is known as crowding. Despite a long history of experimental work, computational models of crowding are still sparse. Specifically, few studies have examined crowding using an ideal-observer approach. Here, we compare crowding in ideal observers with crowding in humans. We derived an ideal-observer model for target identification under conditions of position and identity uncertainty. Simulations showed that this model reproduces the hallmark of crowding, namely a critical spacing that scales with viewing eccentricity. To examine how well the model fits quantitatively to human data, we performed three experiments. In Experiments 1 and 2, we measured observers' perceptual uncertainty about stimulus positions and identities, respectively, for a target in isolation. In Experiment 3, observers identified a target that was flanked by two distractors. We found that about half of the errors in Experiment 3 could be accounted for by the perceptual uncertainty measured in Experiments 1 and 2. The remainder of the errors could be accounted for by assuming that uncertainty (i.e., the width of internal noise distribution) about stimulus positions and identities depends on flanker proximity. Our results provide a mathematical restatement of the crowding problem and support the hypothesis that crowding behavior is a sign of optimality rather than a perceptual defect.


Assuntos
Simulação por Computador , Aglomeração , Percepção de Forma/fisiologia , Modelos Neurológicos , Percepção Espacial/fisiologia , Adulto , Feminino , Humanos , Masculino , Estimulação Luminosa/métodos , Incerteza , Adulto Jovem
7.
Front Oncol ; 2: 77, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22848872

RESUMO

DFNA5 was first identified as a gene responsible for autosomal dominant deafness. Different mutations were found, but they all resulted in exon 8 skipping during splicing and premature termination of the protein. Later, it became clear that the protein also has a tumor suppression function and that it can induce apoptosis. Epigenetic silencing of the DFNA5 gene is associated with different types of cancers, including gastric and colorectal cancers as well as breast tumors. We introduced the wild-type and mutant DFNA5 allele in the yeast Saccharomyces cerevisiae. The expression of the wild-type protein was well tolerated by the yeast cells, although the protein was subject of degradation and often deposited in distinct foci when cells entered the diauxic shift. In contrast, cells had problems to cope with mutant DFNA5 and despite an apparent compensatory reduction in expression levels, the mutant protein still triggered a marked growth defect, which in part can be ascribed to its interaction with mitochondria. Consistently, cells with mutant DFNA5 displayed significantly increased levels of ROS and signs of programmed cell death. The latter occurred independently of the yeast caspase, Mca1, but involved the mitochondrial fission protein, Fis1, the voltage-dependent anion channel protein, Por1 and the mitochondrial adenine nucleotide translocators, Aac1 and Aac3. Recent data proposed DFNA5 toxicity to be associated to a globular domain encoded by exon 2-6. We confirmed these data by showing that expression of solely this domain confers a strong growth phenotype. In addition, we identified a point mutant in this domain that completely abrogated its cytotoxicity in yeast as well as human Human Embryonic Kidney 293T cells (HEK293T). Combined, our data underscore that the yeast system offers a valuable tool to further dissect the apoptotic properties of DFNA5.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA