Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Hazard Mater ; 466: 133546, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38271875

RESUMO

This study examines the transport and retention of colloidal particles and heavy ions in porous sand, focusing on the environmental risks associated with waste from oil and gas drilling. Experimental and numerical models assess the influence of flow rate, external filter cake layer, and ionic strength on bentonite clay particles and heavy ions, such as cadmium (Cd) and lead (Pb), in near-wellbore (high-flux) and far-field (low-flux) scenarios. Colloidal filtration theory and the one-dimensional convection-dispersion equation with two-site kinetic model for attachment and detachment were utilized to calibrate and predict the transport of colloidal suspension in porous media. The research investigates the role of internal and external filter cakes on sand column pressure distribution and heavy ion absorption. Results indicate that the mobility of colloids and heavy ions is influenced by the ionic strength and pH of the carrying fluid. Colloidal clay suspensions show a higher affinity for Pb (II) absorption, while Cd (II) exhibits increased mobility in both clean sand and colloidal environments. Notably, the formation of an external filter cake significantly delays the breakthrough of heavy ions, up to four times longer than in clean sand, and reduces Cd (II) and Pb (II) outlet concentrations by 86% and 93%, respectively. This cake also limits clay concentration and particle size passage. High clay concentrations or injections under high ionic conditions induce clay bridging in pore throats, enhancing internal filtration and heavy ion retention. Conversely, low clay fluxes allow freer particle passage, increasing heavy ion loads and outlet concentrations.

2.
J Hazard Mater ; 401: 123327, 2021 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-32645539

RESUMO

Arsenic (As) contamination in groundwater remains a pressing global challenge. In this study, we evaluated the potential of green rust (GR), a redox-active iron phase frequently occurring in anoxic environments, to treat As contamination at a former wood preservation site. We performed long-term batch experiments by exposing synthetic GR sulfate (GRSO4) to As-free and As-spiked (6 mg L-1) natural groundwater at both 25 and 4 °C. At 25 °C, GRSO4 was metastable in As-free groundwater and transformed to GRCO3, and then fully to magnetite within 120 days; however, GRSO4 stability increased 7-fold by lowering the temperature to 4 °C, and 8-fold by adding As to the groundwater at 25 °C. Highest GRSO4 stability was observed when As was added to the groundwater at 4 °C. This stabilizing effect is explained by GR solubility being lowered by adsorbed As and/or lower temperatures, inhibiting partial GR dissolution required for transformation to GRCO3, and ultimately to magnetite. Despite these mineral transformations, all added As was removed from As-spiked samples within 120 days at 25 °C, while uptake was 2 times slower at 4 °C. Overall, we have successfully documented that GR is an important mineral substrate for As immobilization in anoxic subsurface environments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA