RESUMO
By forming and directionally freezing an aqueous foam containing cellulose nanofibrils, methylcellulose, and tannic acid, we produced a stiff and tough anisotropic solid foam with low radial thermal conductivity. Along the ice-templating direction, the foam was as stiff as nanocellulose-clay composites, despite being primarily methylcellulose by mass. The foam was also stiff perpendicular to the direction of ice growth, while maintaining λr < 25 mW m-1 K-1 for a relative humidity (RH) up to 65% and <30 mW m-1 K-1 at 80% RH. This work introduces the tandem use of two practical techniques, foam formation and directional freezing, to generate a low-density anisotropic material, and this strategy could be applied to other aqueous systems where foam formation is possible.
Assuntos
Gelo , Mesembryanthemum , Aerossóis , Celulose , Metilcelulose , ÁguaRESUMO
The upcycling of discarded garments can help to mitigate the environmental impact of the textile industry. Here, we fabricated hybrid anisotropic foams having cellulose nanocrystals (CNCs), which were isolated from discarded cotton textiles and had varied surface chemistries as structural components, in combination with xanthan gum (XG) as a physical crosslinker of the dispersion used for foam preparation. All CNCs had crystallinity indices above 85 %, zeta potential values below -40 mV at 1 mM NaCl, and true densities ranging from 1.61 to 1.67 g·cm-3. Quartz crystal microbalance with dissipation (QCM-D) measurements indicated weak interactions between CNC and XG, while rheology measurements showed that highly charged CNCs caused the XG chains to change from an extended to a helicoidal conformation, resulting in changes the in viscoelastic properties of the dispersions. The inclusion of XG significantly enhanced the compression mechanical properties of the freeze-casted foams without compromising their thermal properties, anisotropy, or degree of alignment. CNC-XG foams maintained structural integrity even after exposure to high humidity (91 %) and temperatures (100 °C) and displayed very low radial thermal conductivities. This research provides a viable avenue for upcycling cotton-based clothing waste into high-performance materials.
RESUMO
Biopolymer-based functional materials are essential for reducing the carbon footprint and providing high-quality lightweight materials suitable for packaging and thermal insulation. Here, cellulose nanocrystals (CNCs) were efficiently upcycled from post-consumer cotton clothing by TEMPO-mediated oxidation and HCl hydrolysis with a yield of 62% and combined with wood cellulose nanofibrils (CNFs) to produce anisotropic foams by unidirectional freeze-casting followed by freeze drying (FD) or supercritical-drying (SCD). Unidirectional freeze-casting resulted in foams with aligned macropores irrespective of the drying method, but the particle packing in the foam wall was significantly affected by how the ice was removed. The FD foams showed tightly packed and aligned CNC and CNF particles while the SCD foams displayed a more network-like structure in the foam walls. The SCD compared to FD foams had more pores smaller than 300 nm and higher specific surface area but they were more susceptible to moisture-induced shrinkage, especially at relative humidities (RH) > 50%. The FD and SCD foams displayed low radial thermal conductivity, and the FD foams displayed a higher mechanical strength and stiffness in compression in the direction of the aligned particles. Better understanding how drying influences the structural, thermal, mechanical and moisture-related properties of foams based on repurposed cotton is important for the development of sustainable nanostructured materials for various applications.
RESUMO
Low-density foams and aerogels based on upcycled and bio-based nanofibers and additives are promising alternatives to fossil-based thermal insulation materials. Super-insulating foams are prepared from upcycled acid-treated aramid nanofibers (upANFA ) obtained from Kevlar yarn and tempo-oxidized cellulose nanofibers (CNF) from wood. The ice-templated hybrid upANFA /CNF-based foams with an upANFA content of up to 40 wt% display high thermal stability and a very low thermal conductivity of 18-23 mW m-1 K-1 perpendicular to the aligned nanofibrils over a wide relative humidity (RH) range of 20% to 80%. The thermal conductivity of the hybrid upANFA /CNF foams is found to decrease with increasing upANFA content (5-20 wt%). The super-insulating properties of the CNF-upANFA hybrid foams are related to the low density of the foams and the strong interfacial phonon scattering between the very thin and partially branched upANFA and CNF in the hybrid foam walls. Defibrillated nanofibers from textiles are not limited to Kevlar, and this study can hopefully inspire efforts to upcycle textile waste into high-performance products.