Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Med ; 12(4): 401-9, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16582916

RESUMO

Gene transfer into hematopoietic stem cells has been used successfully for correcting lymphoid but not myeloid immunodeficiencies. Here we report on two adults who received gene therapy after nonmyeloablative bone marrow conditioning for the treatment of X-linked chronic granulomatous disease (X-CGD), a primary immunodeficiency caused by a defect in the oxidative antimicrobial activity of phagocytes resulting from mutations in gp91(phox). We detected substantial gene transfer in both individuals' neutrophils that lead to a large number of functionally corrected phagocytes and notable clinical improvement. Large-scale retroviral integration site-distribution analysis showed activating insertions in MDS1-EVI1, PRDM16 or SETBP1 that had influenced regulation of long-term hematopoiesis by expanding gene-corrected myelopoiesis three- to four-fold in both individuals. Although insertional influences have probably reinforced the therapeutic efficacy in this trial, our results suggest that gene therapy in combination with bone marrow conditioning can be successfully used to treat inherited diseases affecting the myeloid compartment such as CGD.


Assuntos
Proteínas de Transporte/genética , Proteínas de Ligação a DNA/genética , Terapia Genética/métodos , Doença Granulomatosa Crônica/terapia , Células-Tronco Hematopoéticas/fisiologia , Proteínas de Neoplasias/genética , Proteínas Nucleares/genética , Fatores de Transcrição/genética , Adulto , Cromossomos Humanos X , Ensaios Clínicos como Assunto , Técnicas de Transferência de Genes , Ligação Genética , Marcadores Genéticos , Vetores Genéticos , Doença Granulomatosa Crônica/sangue , Doença Granulomatosa Crônica/etiologia , Doença Granulomatosa Crônica/genética , Humanos , Proteína do Locus do Complexo MDS1 e EVI1 , Mutagênese Insercional , Neutrófilos/fisiologia , Proto-Oncogenes , RNA Mensageiro/análise , Retroviridae/genética , Resultado do Tratamento
2.
Mol Ther ; 15(5): 1024-1033, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-28182893

RESUMO

Drug toxicity and viral resistance limit the long-term efficacy of antiviral drug treatment for human immunodeficiency virus (HIV) infection. Thus, alternative therapies need to be explored. We tested the infusion of T lymphocytes transduced with a retroviral vector (M87o) that expresses an HIV entry-inhibitory peptide (maC46). Gene-modified autologous T cells were infused into ten HIV-infected patients with advanced disease and multidrug-resistant virus during anti-retroviral combination therapy. T-cell infusions were tolerated well, with no severe side effects. A significant increase of CD4 counts was observed after infusion. At the end of the 1-year follow-up, the CD4 counts of all patients were still around or above baseline. Gene-modified cells could be detected in peripheral blood, lymph nodes, and bone marrow throughout the 1-year follow-up, and marking levels correlated with the cell dose. No significant changes of viral load were observed during the first 4 months. Four of the seven patients who changed their antiviral drug regimen thereafter responded with a significant decline in plasma viral load. In conclusion, the transfer of gene-modified cells was safe, led to sustained levels of gene marking, and may improve immune competence in HIV-infected patients with advanced disease and multidrug-resistant virus.

3.
Exp Hematol ; 30(2): 150-7, 2002 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-11823050

RESUMO

OBJECTIVE: Hematopoietic progenitor cells are a promising source for generation of genetically modified dendritic cells. A prerequisite for using these cells in therapeutic approaches is stable vector-mediated transgene expression during and after cell maturation. We investigated the expression of enhanced green fluorescence protein (EGFP) mediated by retroviral vectors in dendritic cells and other hematopoietic cells differentiated in vitro. MATERIAL AND METHODS: CD34(+) cells were efficiently transduced with retroviral vector constructs known to mediate different expression levels due to distinct cis-acting elements. EGFP(+) cells were purified by cell sorting and differentiated to monocytes, granulocytes, dendritic cells, and erythrocytes. Coexpression of EGFP and cell type-specific markers was analyzed by flow cytometry. RESULTS: Transgene expression from various retroviral vectors was silenced exclusively in dendritic cells, but not in other mature myeloid cells. Loss of EGFP was most pronounced in cells initially displaying low expression levels. This was confirmed by using a retroviral vector coding for a variant of EGFP with significantly reduced half-life. In contrast, a majority of dendritic cells showed stable expression when a self-inactivating retroviral construct using an internal cytomegalovirus promotor was used. CONCLUSIONS: We suggest that expression from the retroviral long terminal repeat is silenced during dendritic cell differentiation in vitro. High levels of stable transgene product in progenitor cells may mask a loss of expression. An improvement of retroviral vectors mediating stable transgenic expression is necessary for therapeutic approaches using gene-modified dendritic cells.


Assuntos
Linhagem da Célula/genética , Células Dendríticas/fisiologia , Vetores Genéticos , Células-Tronco Hematopoéticas/fisiologia , Retroviridae , Transdução Genética , Células Cultivadas , Células Dendríticas/citologia , Regulação para Baixo/genética , Células-Tronco Hematopoéticas/citologia , Humanos , Monócitos/citologia , Monócitos/fisiologia
4.
Hum Gene Ther ; 13(2): 233-42, 2002 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-11812280

RESUMO

Myelosuppression is the main side effect of cancer chemotherapy. An improved rate of retroviral vector-mediated gene transfer to hematopoietic stem cells, shown in more recent clinical trials, has created the basis to test the concept of myeloprotective gene therapy. We transplanted clinical-scale human peripheral blood progenitor cell grafts (n = 2) transduced with retroviral vector SF91m3, which contains the human multidrug resistance 1 gene (MDR1), into nonobese diabetic/severe combined immunodeficient (NOD/SCID) mice. Engrafted mice of one cohort were protected from paclitaxel toxicity (p < 0.05) and we noted a similar trend in the second cohort. In paclitaxel-treated mice that had received gene-transduced cells we found a significant increase in gene marking (p < 0.05 - p < 0.01) or P-glycoprotein expression (p < 0.01) compared with their chemotherapy-naive counterparts. This is the first report showing that cytostatic drug resistance gene therapy can mediate chemoprotection of human clinically relevant stem cell populations with marrow engraftment potential.


Assuntos
Genes MDR/genética , Transplante de Células-Tronco Hematopoéticas , Paclitaxel/toxicidade , Animais , Animais Geneticamente Modificados , Resistência a Medicamentos/genética , Técnicas de Transferência de Genes , Terapia Genética , Humanos , Camundongos , Camundongos SCID , Células Tumorais Cultivadas
5.
Mol Ther ; 15(5): 1024-33, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17356541

RESUMO

Drug toxicity and viral resistance limit the long-term efficacy of antiviral drug treatment for human immunodeficiency virus (HIV) infection. Thus, alternative therapies need to be explored. We tested the infusion of T lymphocytes transduced with a retroviral vector (M87o) that expresses an HIV entry-inhibitory peptide (maC46). Gene-modified autologous T cells were infused into ten HIV-infected patients with advanced disease and multidrug-resistant virus during anti-retroviral combination therapy. T-cell infusions were tolerated well, with no severe side effects. A significant increase of CD4 counts was observed after infusion. At the end of the 1-year follow-up, the CD4 counts of all patients were still around or above baseline. Gene-modified cells could be detected in peripheral blood, lymph nodes, and bone marrow throughout the 1-year follow-up, and marking levels correlated with the cell dose. No significant changes of viral load were observed during the first 4 months. Four of the seven patients who changed their antiviral drug regimen thereafter responded with a significant decline in plasma viral load. In conclusion, the transfer of gene-modified cells was safe, led to sustained levels of gene marking, and may improve immune competence in HIV-infected patients with advanced disease and multidrug-resistant virus.


Assuntos
Transferência Adotiva/métodos , Infecções por HIV/terapia , HIV/imunologia , Linfócitos T/imunologia , Adulto , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Farmacorresistência Viral/imunologia , Citometria de Fluxo , Vetores Genéticos/genética , Infecções por HIV/imunologia , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/imunologia , Proteínas Recombinantes de Fusão/metabolismo , Retroviridae/genética , Linfócitos T/citologia , Linfócitos T/metabolismo , Resultado do Tratamento , Carga Viral
6.
Mol Ther ; 5(4): 473-8, 2002 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-11945075

RESUMO

Efficient retroviral gene transfer into primary cells is a prerequisite for various gene therapeutic strategies. We have developed a transduction protocol based on the preloading of tissue culture vessels with retroviral particles by low-speed (1000g) centrifugation. We show that vector-preloaded tissue culture vessels allow highly efficient gene transfer into various target cells. We obtained transduction rates of up to 85% for primary T lymphocytes after just a single round of transduction. Under clinically relevant conditions using a vector developed for suicide gene therapy and produced under good manufacturing practice (GMP) conditions, the described method allowed generation of large numbers (>2x10(9)) of gene-modified T cells. The preloading concept ensures transduction of target cells in their optimal growth medium regardless of the medium used for vector production. This facilitated highly efficient gene transfer into quite different target cells such as CD34(+) and AC133(+) bone marrow progenitor as well as mesenchymal stem cells. The presented method combines high gene-transfer rates with a great potential for standardization in accordance with GMP guidelines and is consequently well suited for both research and clinical applications. (c)2002 Elsevier Science (USA).


Assuntos
Técnicas de Cultura de Células/métodos , Centrifugação , Vetores Genéticos , Retroviridae/genética , Linfócitos T/metabolismo , Transdução Genética/métodos , Técnicas de Cultura de Células/instrumentação , Linhagem Celular , Humanos , Cinética , Células-Tronco/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA