Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Opt Lett ; 47(10): 2374-2377, 2022 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-35561354

RESUMO

We demonstrate record ∼0.9% efficiencies for optical conversion to narrowband (<1% relative bandwidth) terahertz (THz) radiation by strongly cascaded difference frequency generation. These results are achieved using a novel, to the best of our knowledge, laser source, customized for high efficiencies, with two narrow spectral lines of variable separation and pulse duration (≥250 ps). THz radiation generation in 5% MgO-doped periodically poled lithium niobate (PPLN) crystals of varying poling period was explored at cryogenic and room temperature operation as well as with different crystal lengths. This work addresses an increasing demand for high-field THz radiation pulses which has, up to now, been largely limited by low optical-to-THz radiation conversion efficiencies.

2.
Opt Express ; 27(8): 11037-11056, 2019 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-31052955

RESUMO

We generate temporally modulated optical pulses with a beat frequency of 255 GHz, a duration of 360 ps, and a repetition rate of 2 MHz. The temporal envelope, beat frequency, and repetition rate are computer-programmable. A frequency comb serves as a phase and frequency reference for the locking of two laser lines. The system enables beat frequencies that are adjustable in steps of the frequency comb's repetition rate and exhibit Hz-level precision and accuracy. We expect the optical beat pulses to be well suited for versatile multi-cycle terahertz-wave generation with controllable carrier-envelope phase. We demonstrate that the inherent synchronization of the frequency comb's ultra-short pulse train and the synthesized optical beat (or later the multi-cycle terahertz) pulses enables rapid and phase-sensitive sampling of such pulses.

3.
Opt Express ; 26(5): 6427-6438, 2018 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-29529835

RESUMO

We demonstrate a pre-chirp managed amplification (PCMA) system that is based on two stages of core-pumped, polarization maintaining (PM) fiber amplifiers. It produces output pulses with <65 fs duration and >10 nJ pulse energy from single-mode fibers. Tailoring of the spectra in the amplification chain enables pulse compression to near-perfect transform limited pulses (Strehl-ratio >0.9) and low intensity noise levels (0.008%) despite B-integrals >40 rad in the PCMA amplifier. Design strategies are presented. We expect this PCMA system to become an easy to implement add-on to a variety of existing sources while maintaining the advantages of the robustness of the PM standard fiber format.

4.
Opt Lett ; 37(15): 3069-71, 2012 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-22859088

RESUMO

We demonstrate polarization-sensitive measurement of the modal content of waveguides by generalizing the classic rotating wave-plate-based polarimeter to wide-field optical low-coherence interferometry. The spatial phases of the modes are retrieved with principal component analysis. By applying this polarization-sensitive cross-correlation (C2) imaging technique to the characterization of a few-mode fiber, we reveal that different modes experience distinct bend-induced birefringence in optical fibers. This polarization-resolved C2 imaging is well suited for analyzing the impact of polarization on wave propagation in high-power fiber lasers as well as in mode-division-multiplexed communications systems.

5.
Opt Express ; 19(14): 13008-19, 2011 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-21747453

RESUMO

We demonstrate a method that enables reconstruction of waveguide or fiber modes without assuming any optical properties of the test waveguide. The optical low-coherence interferometric technique accounts for the impact of dispersion on the cross-correlation signal. This approach reveals modal content even at small intermodal delays, thus providing a universally applicable method for determining the modal weights, profiles, relative group-delays and dispersion of all guided or quasi-guided (leaky) modes. Our current implementation allows us to measure delays on a femtosecond time-scale, mode discrimination down to about - 30 dB, and dispersion values as high as 500 ps/nm/km. We expect this technique to be especially useful in testing fundamental mode operation of multi-mode structures, prevalent in high-power fiber lasers.


Assuntos
Tecnologia de Fibra Óptica/instrumentação , Tecnologia de Fibra Óptica/métodos , Interpretação de Imagem Assistida por Computador/métodos , Interferometria/instrumentação , Interferometria/métodos , Refratometria/métodos , Estatística como Assunto
6.
Opt Lett ; 34(24): 3788-90, 2009 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-20016614

RESUMO

Using phase shaping, the impact of the Kerr effect in a fiber-based chirped-pulse amplification (CPA) system is experimentally controlled. The technique is based on an analytical model describing the spectral phase owing to self-phase modulation in CPA systems. The method relies neither on complex phase measurements nor on time-consuming optimization routines. Nearly transform-limited pulses with energies as high as 1 mJ are produced, and a B integral being as high as 8 rad is accumulated in the main amplifier. The value of the B integral is determined by the method itself.

7.
Opt Express ; 15(25): 16729-36, 2007 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-19550960

RESUMO

We report on a high repetition rate noncollinear optical parametric amplifier system (NOPA) based on a cavity dumped Ti:Sapphire oscillator providing the signal, and an Ytterbium-doped fiber amplifier pumping the device. Temporally synchronized NOPA pump pulses are created via soliton generation in a highly nonlinear photonic crystal fiber. This soliton is fiber amplified to high pulse-energies at high repetition rates. The broadband Ti:Sapphire laser pulses are parametrically amplified either directly or after additional spectral broadening. The approach of fiber-based pump-pulse generation from a femtosecond laser, that emits in the spectral region of NOPA-gain, offers enhanced long-term stability and pulse quality compared to conventional techniques, such as signal pulse generation from a high power laser system via filamentation in bulk media. The presented system produces high-energy ultra-short pulses with pulse-durations down to 15.6 fs and pulse-energies up to 500 nJ at a repetition rate as high as 2 MHz.

8.
Opt Express ; 15(9): 5699-710, 2007 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-19532828

RESUMO

We report on an optical parametric amplification system which is pumped and seeded by fiber generated laser radiation. Due to its low broadening threshold, high spatial beam quality and high stability, the fiber based broad bandwidth signal generation is a promising alternative to white light generation in bulky glass or sapphire plates. We demonstrate a novel and successful signal engineering implemented in a setup for parametric amplification and subsequent recompression of resonant linear waves resulting from soliton fission in a highly nonlinear photonic crystal fiber. The applied pump source is a high repetition rate ytterbium-doped fiber chirped pulse amplification system. The presented approach results in the generation of ~50 fs pulses at MHz repetition rate. The potential of generating even shorter pulse duration and higher pulse energies will be discussed.

9.
Opt Lett ; 32(24): 3495-7, 2007 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-18087520

RESUMO

We report on an ytterbium-doped fiber chirped-pulse amplification (CPA) system delivering millijoule level pulse energy at repetition rates above 100 kHz corresponding to an average power of more than 100 W. The compressed pulses are as short as 800 fs. As the main amplifier, an 80 microm core diameter short length photonic crystal fiber is employed, which allows the generation of pulse energies up to 1.45 mJ with a B-integral as low as 7 at a stretched pulse duration of 2 ns. A stretcher-compressor unit consisting of dielectric diffraction gratings is capable of handling the average power without beam and pulse quality distortions. To our knowledge, we present the highest pulse energy ever extracted from fiber based femtosecond laser systems, and a nearly 2 orders of magnitude higher repetition rate than in previously published millijoule-level fiber CPA systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA