Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Fungal Genet Biol ; 137: 103337, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31991229

RESUMO

Nitric oxide (NO) can be biologically synthesized from nitrite or from arginine. Although NO is involved as a signal in many biological processes in bacteria, plants, and mammals, still little is known about the role of NO in fungi. Here we show that NO levels are regulated by light as an environmental signal in Aspergillus nidulans. The flavohaemoglobin-encoding fhbB gene involved in NO oxidation to nitrate, and the arginine-regulated arginase encoded by agaA, which controls the intracellular concentration of arginine, are both up-regulated by light. The phytochrome fphA is required for the light-dependent induction of fhbB and agaA, while the white-collar gene lreA acts as a repressor when arginine is present in the media. The intracellular arginine pools increase upon induction of both developmental programs (conidiation and sexual development), and the increase is higher under conditions promoting sexual development. The presence of low concentrations of arginine does not affect the light-dependent regulation of conidiation, but high concentrations of arginine overrun the light signal. Deletion of fhbB results in the partial loss of the light regulation of conidiation on arginine and on nitrate media, while deletion of fhbA only affects the light regulation of conidiation on nitrate media. Our working model considers a cross-talk between environmental cues and intracellular signals to regulate fungal reproduction.


Assuntos
Aspergillus nidulans/metabolismo , Óxido Nítrico/metabolismo , Reprodução Assexuada/fisiologia , Aspergillus/genética , Aspergillus/metabolismo , Aspergillus nidulans/genética , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica/genética , Genes Fúngicos/genética , Homeostase , Luz , Esporos Fúngicos/crescimento & desenvolvimento , Ativação Transcricional/genética
2.
PLoS Genet ; 11(7): e1005297, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26132230

RESUMO

The assimilation of nitrate, a most important soil nitrogen source, is tightly regulated in microorganisms and plants. In Aspergillus nidulans, during the transcriptional activation process of nitrate assimilatory genes, the interaction between the pathway-specific transcription factor NirA and the exportin KapK/CRM1 is disrupted, and this leads to rapid nuclear accumulation and transcriptional activity of NirA. In this work by mass spectrometry, we found that in the absence of nitrate, when NirA is inactive and predominantly cytosolic, methionine 169 in the nuclear export sequence (NES) is oxidized to methionine sulfoxide (Metox169). This oxidation depends on FmoB, a flavin-containing monooxygenase which in vitro uses methionine and cysteine, but not glutathione, as oxidation substrates. The function of FmoB cannot be replaced by alternative Fmo proteins present in A. nidulans. Exposure of A. nidulans cells to nitrate led to rapid reduction of NirA-Metox169 to Met169; this reduction being independent from thioredoxin and classical methionine sulfoxide reductases. Replacement of Met169 by isoleucine, a sterically similar but not oxidizable residue, led to partial loss of NirA activity and insensitivity to FmoB-mediated nuclear export. In contrast, replacement of Met169 by alanine transformed the protein into a permanently nuclear and active transcription factor. Co-immunoprecipitation analysis of NirA-KapK interactions and subcellular localization studies of NirA mutants lacking different parts of the protein provided evidence that Met169 oxidation leads to a change in NirA conformation. Based on these results we propose that in the presence of nitrate the activation domain is exposed, but the NES is masked by a central portion of the protein (termed nitrate responsive domain, NiRD), thus restricting active NirA molecules to the nucleus. In the absence of nitrate, Met169 in the NES is oxidized by an FmoB-dependent process leading to loss of protection by the NiRD, NES exposure, and relocation of the inactive NirA to the cytosol.


Assuntos
Aspergillus nidulans/metabolismo , Proteínas Fúngicas/metabolismo , Metionina/metabolismo , Nitratos/metabolismo , Ativação Transcricional/genética , Alanina/metabolismo , Substituição de Aminoácidos/genética , Aspergillus nidulans/genética , Transporte Biológico/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica/genética , Carioferinas/genética , Metionina/análogos & derivados , Metionina/química , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Oxirredução , Receptores Citoplasmáticos e Nucleares/genética , Transdução de Sinais , Proteína Exportina 1
3.
Fungal Genet Biol ; 54: 34-41, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23454548

RESUMO

In fungi, transcriptional activation of genes involved in NO3(-) assimilation requires the presence of an inducer (nitrate or nitrite) and low intracellular concentrations of the pathway products ammonium or glutamine. In Aspergillus nidulans, the two transcription factors NirA and AreA act synergistically to mediate nitrate/nitrite induction and nitrogen metabolite derepression, respectively. In all studied fungi and in plants, mutants lacking nitrate reductase (NR) activity express nitrate-metabolizing enzymes constitutively without the addition of inducer molecules. Based on their work in A. nidulans, Cove and Pateman proposed an "autoregulation control" model for the synthesis of nitrate metabolizing enzymes in which the functional nitrate reductase molecule would act as co-repressor in the absence and as co-inducer in the presence of nitrate. However, NR mutants could simply show "pseudo-constitutivity" due to induction by nitrate which accumulates over time in NR-deficient strains. Here we examined this possibility using strains which lack flavohemoglobins (fhbs), and are thus unable to generate nitrate internally, in combination with nitrate transporter mutations (nrtA, nrtB) and a GFP-labeled NirA protein. Using different combinations of genotypes we demonstrate that nitrate transporters are functional also in NR null mutants and show that the constitutive phenotype of NR mutants is not due to nitrate accumulation from intracellular sources but depends on the activity of nitrate transporters. However, these transporters are not required for nitrate signaling because addition of external nitrate (10 mM) leads to standard induction of nitrate assimilatory genes in the nitrate transporter double mutants. We finally show that NR does not regulate NirA localization and activity, and thus the autoregulation model, in which NR would act as a co-repressor of NirA in the absence of nitrate, is unlikely to be correct. Results from this study instead suggest that transporter-mediated NO3⁻ accumulation in NR deficient mutants, originating from traces of nitrate in the media, is responsible for the constitutive expression of NirA-regulated genes, and the associated phenotype is thus termed "pseudo-constitutive".


Assuntos
Aspergillus nidulans/genética , Proteínas Fúngicas/metabolismo , Nitrato Redutase/genética , Nitratos/metabolismo , Aspergillus nidulans/enzimologia , Aspergillus nidulans/metabolismo , Proteínas Correpressoras , Proteínas Fúngicas/genética , Mutação , Nitrato Redutase/metabolismo , Nitratos/química , Nitritos/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
4.
Mol Microbiol ; 78(3): 720-38, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20969648

RESUMO

Nitrate is a dominant form of inorganic nitrogen (N) in soils and can be efficiently assimilated by bacteria, fungi and plants. We studied here the transcriptome of the short-term nitrate response using assimilating and non-assimilating strains of the model ascomycete Aspergillus nidulans. Among the 72 genes positively responding to nitrate, only 18 genes carry binding sites for the pathway-specific activator NirA. Forty-five genes were repressed by nitrate metabolism. Because nirA(-) strains are N-starved at nitrate induction conditions, we also compared the nitrate transcriptome with N-deprived conditions and found a partial overlap of differentially regulated genes between these conditions. Nitric oxide (NO)-metabolizing flavohaemoglobins were found to be co-regulated with nitrate assimilatory genes. Subsequent molecular characterization revealed that the strongly inducible FhbA is required for full activity of nitrate and nitrite reductase enzymes. The co-regulation of NO-detoxifying and nitrate/nitrite assimilating systems may represent a conserved mechanism, which serves to neutralize nitrosative stress imposed by an external NO source in saprophytic and pathogenic fungi. Our analysis using membrane-permeable NO donors suggests that signalling for NirA activation only indirectly depends on the nitrate transporters NrtA (CrnA) and NrtB (CrnB).


Assuntos
Aspergillus nidulans/genética , Aspergillus nidulans/metabolismo , Perfilação da Expressão Gênica , Nitratos/metabolismo , Óxido Nítrico/metabolismo , Proteínas de Transporte de Ânions/genética , Proteínas de Transporte de Ânions/metabolismo , Aspergillus nidulans/enzimologia , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Nitrato Redutase/genética , Nitrato Redutase/metabolismo , Transportadores de Nitrato , Nitrito Redutases/genética , Nitrito Redutases/metabolismo
5.
Appl Environ Microbiol ; 74(4): 1076-86, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18083888

RESUMO

The production by filamentous fungi of therapeutic glycoproteins intended for use in mammals is held back by the inherent difference in protein N-glycosylation and by the inability of the fungal cell to modify proteins with mammalian glycosylation structures. Here, we report protein N-glycan engineering in two Aspergillus species. We functionally expressed in the fungal hosts heterologous chimeric fusion proteins containing different localization peptides and catalytic domains. This strategy allowed the isolation of a strain with a functional alpha-1,2-mannosidase producing increased amounts of N-glycans of the Man5GlcNAc2 type. This strain was further engineered by the introduction of a functional GlcNAc transferase I construct yielding GlcNAcMan5GlcNac2 N-glycans. Additionally, we deleted algC genes coding for an enzyme involved in an early step of the fungal glycosylation pathway yielding Man3GlcNAc2 N-glycans. This modification of fungal glycosylation is a step toward the ability to produce humanized complex N-glycans on therapeutic proteins in filamentous fungi.


Assuntos
Aspergillus/metabolismo , Polissacarídeos/biossíntese , Engenharia de Proteínas/métodos , Transformação Bacteriana/genética , Sequência de Bases , Clonagem Molecular , Primers do DNA/genética , Técnicas de Transferência de Genes , Manosiltransferases/genética , Dados de Sequência Molecular , Polissacarídeos/genética , Proteínas Recombinantes de Fusão/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de DNA , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , alfa-Manosidase/metabolismo
6.
Biotechnol Appl Biochem ; 49(Pt 1): 35-40, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17576197

RESUMO

The sgsE gene coding for the S-layer (surface layer) protein in the thermophilic Gram-positive bacterium Geobacillus stearothermophilus NRS 2004/3a is strongly induced when the culture is shifted from optimal (55 degrees C) to maximally tolerable growth temperature (67 degrees C). Here, we investigated the regulation of the sgsE promoter in G. stearothermophilus and tested the function of this promoter in Bacillus subtilis. We used EGFP (enhanced green fluorescent protein) reporter constructs and found that the sgsE promoter has very low basal activity at 28 degrees C, but is approx. 20-fold induced by elevated growth temperatures (37 and 45 degrees C). The promoter confers high expression levels, as EGFP mRNA levels at 45 degrees C were approx. 120-fold more abundant than mRNA levels of the cat (chloramphenicol resistance) gene, which was transcribed from a constitutive promoter on the same plasmid. In fluorescence-microscopic and Western-blot analysis, the EGFP protein was barely detectable at 28 degrees C, whereas intermediate and high levels were detected at 37 and 45 degrees C respectively. The potential to tune expression levels of genes driven by the sgsE promoter in B. subtilis by simple temperature adjustments presents a considerable potential for its future use as high-yield protein expression system for B. subtilis.


Assuntos
Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica/fisiologia , Genes Reporter , Geobacillus stearothermophilus/genética , Glicoproteínas de Membrana/genética , Regiões Promotoras Genéticas , Temperatura , Bacillus subtilis/genética , Proteínas de Bactérias/biossíntese , Sequência de Bases , Clonagem Molecular , Glicoproteínas de Membrana/biossíntese , Dados de Sequência Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA