Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Int J Ion Mobil Spectrom ; 21(4): 125-136, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31086501

RESUMO

Due to the versatility of present day microcontroller boards and open source development environments, new analytical chemistry devices can now be built outside of large industry and instead within smaller individual groups. While there are a wide range of commercial devices available for detecting and identifying volatile organic compounds (VOCs), most of these devices use their own proprietary software and complex custom electronics, making modifications or reconfiguration of the systems challenging. The development of microprocessors for general use, such as the Arduino prototyping platform, now enables custom chemical analysis instrumentation. We have created an example system using commercially available parts, centered around on differential mobility spectrometer (DMS) device. The Modular Reconfigurable Gas Chromatography - Differential Mobility Spectrometry package (MR-GC-DMS) has swappable components allowing it to be quickly reconfigured for specific application purposes as well as broad, generic use. The MR-GC-DMS has a custom user-friendly graphical user interface (GUI) and precisely tuned proportional-integral-derivative controller (PID) feedback control system managing individual temperature-sensitive components. Accurate temperature control programmed into the microcontroller greatly increases repeatability and system performance. Together, this open-source platform enables researchers to quickly combine DMS devices in customized configurations for new chemical sensing applications.

2.
Talanta ; 146: 148-54, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26695246

RESUMO

Volatile organic compounds (VOCs) are off-gassed from all living organisms and represent end products of metabolic pathways within the system. In agricultural systems, these VOCs can provide important information on plant health and can ordinarily be measured non-invasively without harvesting tissue from the plants. Previously we reported a portable gas chromatography/differential mobility spectrometry (GC/DMS) system that could distinguish VOC profiles of pathogen-infected citrus from healthy trees before visual symptoms of disease were present. These measurements were taken directly from canopies in the field, but the sampling and analysis protocol did not readily transfer to a controlled greenhouse study where the ambient background air was saturated with volatiles contained in the facility. In this study, we describe for the first time a branch enclosure uniquely coupled with GC/DMS to isolate and measure plant volatiles. To test our system, we sought to replicate our field experiment within a contained greenhouse and distinguish the VOC profiles of healthy versus citrus infected with Candidatus Liberibacter asiaticus. We indeed confirm the ability to track infection-related trace biogenic VOCs using our sampling system and method and we now show this difference in Lisbon lemons (Citrus×limon L. Burm. f.), a varietal not previously reported. Furthermore, the system differentiates the volatile profiles of Lisbon lemons from Washington navels [Citrus sinensis (L.) Osbeck] and also from Tango mandarins (Citrus reticulata Blanco). Based on this evidence, we believe this enclosure-GC/DMS system is adaptable to other volatile-based investigations of plant diseases in greenhouses or other contained settings, and this system may be helpful for basic science research studies of infection mechanisms.


Assuntos
Citrus/química , Ambiente Controlado , Análise Espectral/métodos , Compostos Orgânicos Voláteis/análise , Compostos Orgânicos Voláteis/isolamento & purificação , Citrus/crescimento & desenvolvimento , Umidade , Compostos Orgânicos Voláteis/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA