Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Mol Ecol ; 27(15): 3070-3086, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29633410

RESUMO

Host specialization is a key process in ecological divergence and speciation of plant-associated fungi. The underlying determinants of host specialization are generally poorly understood, especially in endophytes, which constitute one of the most abundant components of the plant microbiome. We addressed the genetic basis of host specialization in two sympatric subspecies of grass-endophytic fungi from the Epichloë typhina complex: subsp. typhina and clarkii. The life cycle of these fungi entails unrestricted dispersal of gametes and sexual reproduction before infection of a new host, implying that the host imposes a selective barrier on viability of the progeny. We aimed to detect genes under divergent selection between subspecies, experiencing restricted gene flow due to adaptation to different hosts. Using pooled whole-genome sequencing data, we combined FST and DXY population statistics in genome scans and detected 57 outlier genes showing strong differentiation between the two subspecies. Genomewide analyses of nucleotide diversity (π), Tajima's D and dN/dS ratios indicated that these genes have evolved under positive selection. Genes encoding secreted proteins were enriched among the genes showing evidence of positive selection, suggesting that molecular plant-fungus interactions are strong drivers of endophyte divergence. We focused on five genes encoding secreted proteins, which were further sequenced in 28 additional isolates collected across Europe to assess genetic variation in a larger sample size. Signature of positive selection in these isolates and putative identification of pathogenic function supports our findings that these genes represent strong candidates for host specialization determinants in Epichloë endophytes. Our results highlight the role of secreted proteins as key determinants of host specialization.


Assuntos
Endófitos/genética , Epichloe/genética , Variação Genética/genética , Genética Populacional
2.
Environ Sci Technol ; 52(13): 7534-7544, 2018 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-29851480

RESUMO

Neonicotinoids are implicated in the decline of honey bees, but the molecular basis underlying adverse effects is poorly known. Here we describe global transcriptomic profiles in the brain of honey bee workers exposed for 48 h at one environmentally realistic and one sublethal concentration of 0.3 and 3.0 ng/bee clothianidin and imidacloprid, respectively, and 0.1 and 1.0 ng/bee thiamethoxam (1-30 ng/mL sucrose solution) by high-throughput RNA-sequencing (RNA-seq). All neonicotinoids led to significant alteration (mainly down-regulation) of gene expression, generally with a concentration-dependent effect. Among many others, genes related to metabolism and detoxification were differently expressed. Gene ontology (GO) enrichment analysis of biological processes revealed catabolic carbohydrate metabolism (regulation of enzyme activities such as amylase), lipid metabolism, and transport mechanisms as shared terms between all neonicotinoids at high concentrations. KEGG pathway analysis indicated that at least two neonicotinoids induced changes in expression of various metabolic pathways: pentose phosphate pathways, starch and sucrose metabolism, and sulfur metabolism, in which glucose 1-dehydrogenase and alpha-amylase were down-regulated and 3'(2'), 5'-bisphosphate nucleotidase was up-regulated. RT-qPCR analysis confirmed the down-regulation of major royal jelly proteins, hbg3, and cyp9e2 found by RNA-seq. Our study highlights the comparative molecular effects of neonicotinoid exposure to bees. Further studies should link these effects with physiological outcomes for a better understanding of effects of neonicotinoids.


Assuntos
Inseticidas , Tiametoxam , Animais , Abelhas , Encéfalo , Guanidinas , Neonicotinoides , Nitrocompostos , Tiazóis , Transcriptoma
3.
Microb Ecol ; 70(1): 51-60, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25542204

RESUMO

Reproductive isolation is central to the maintenance of species, and especially in sympatry, effective barriers to prevent interspecific crosses are expected. Host specificity is thought to constitute an effective mechanism for the formation of barriers in different genera of Fungi, but evidence for endophytes is so far lacking. Sexual Epichloë species (Ascomycota, Clavicipitaceae) represent an ideal study system to investigate the mechanisms underlying speciation as mediated by host specificity because they include species complexes with several host-specific taxa. Here, we studied genetic differentiation of three host-specific Epichloë species using microsatellite markers that were newly in silico identified on the genome of Epichloë poae. Among these, 15 were experimentally tested and applied to study an extensive sampling of isolates representing Epichloë typhina infecting Dactylis glomerata and Epichloë clarkii infecting Holcus lanatus from a site with sympatric populations in Switzerland, as well as a reduced sampling of E. poae infecting Poa nemoralis to create a three-taxon dataset. Both principal coordinate analysis and Bayesian clustering algorithm showed three genetically distinct groups representing the three host-specific species. High pairwise F ST values among the three species, as well as sequencing data of the tefA gene revealing diagnostic single nucleotide polymorphisms (SNPs), further support the hypothesis of genetic discontinuities among the taxa. These results provide genotypic evidence of the maintenance of reproductive isolation of the species in a context of sympatry. In silico testing of 885 discovered microsatellites on the genome of Epichloë festucae extend their applicability to a wider taxonomic range of Epichloë.


Assuntos
Dactylis/microbiologia , Ecossistema , Epichloe/genética , Especiação Genética , Variação Genética , Holcus/microbiologia , Isolamento Reprodutivo , Sequência de Bases , Teorema de Bayes , Epichloe/classificação , Genética Populacional , Repetições de Microssatélites/genética , Dados de Sequência Molecular , Polimorfismo de Nucleotídeo Único/genética , Análise de Componente Principal , Análise de Sequência de DNA , Especificidade da Espécie , Suíça
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA