Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Microbiol ; 23(11): 6764-6776, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34472201

RESUMO

Microbial populations often display different degrees of heterogeneity in their substrate assimilation, that is, anabolic heterogeneity. It has been shown that nutrient limitations are a relevant trigger for this behaviour. Here we explore the dynamics of anabolic heterogeneity under nutrient replete conditions. We applied time-resolved stable isotope probing and nanoscale secondary ion mass spectrometry to quantify substrate assimilation by individual cells of Pseudomonas putida, P. stutzeri and Thauera aromatica. Acetate and benzoate at different concentrations were used as substrates. Anabolic heterogeneity was quantified by the cumulative differentiation tendency index. We observed two major, opposing trends of anabolic heterogeneity over time. Most often, microbial populations started as highly heterogeneous, with heterogeneity decreasing by various degrees over time. The second, less frequently observed trend, saw microbial populations starting at low or very low heterogeneity, and remaining largely stable over time. We explain these trends as an interplay of metabolic history (e.g. former growth substrate or other nutrient limitations) and metabolic fitness (i.e. the fine-tuning of metabolic pathways to process a defined growth substrate). Our results offer a new viewpoint on the intra-population functional diversification often encountered in the environment, and suggests that some microbial populations may be intrinsically heterogeneous.


Assuntos
Pseudomonas putida , Isótopos , Redes e Vias Metabólicas , Pseudomonas putida/genética , Espectrometria de Massa de Íon Secundário
2.
Appl Microbiol Biotechnol ; 105(4): 1731-1744, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33511442

RESUMO

Rhodococcus erythropolis S43 is an arsenic-tolerant actinobacterium isolated from an arsenic contaminated soil. It has been shown to produce siderophores when exposed to iron-depleting conditions. In this work, strain S43 was shown to have the putative heterobactin production cluster htbABCDEFGHIJ(K). To induce siderophore production, the strain was cultured in iron-depleted medium in presence and absence of sodium arsenite. The metabolites produced by S43 in the colorimetric CAS and As-mCAS assays, respectively, showed iron- and arsenic-binding properties reaching a chelating activity equivalent to 1.6 mM of desferroxamine B in the supernatant of the culture without arsenite. By solid-phase extraction and two subsequent HPLC separations from both cultures, several fractions were obtained, which contained CAS and As-mCAS activity and which were submitted to LC-MS analyses including fragmentation of the major peaks. The mixed-type siderophore heterobactin B occurred in all analyzed fractions, and the mass of the "Carrano heterobactin A" was detected as well. In addition, generation of a molecular network based on fragment spectra revealed the occurrence of several other compounds with heterobactin-like structures, among them a heterobactin B variant with an additional CH2O moiety. 1H NMR analyses obtained for preparations from the first HPLC step showed signals of heterobactin B and of "Carrano heterobactin A" with different relative amounts in all three samples. In summary, our results reveal that in R. erythropolis S43, a pool of heterobactin variants is responsible for the iron- and arsenic-binding activities. KEY POINTS: • Several heterobactin variants are the arsenic-binding compounds in Rhodococcus erythropolis S43. • Heterobactin B and the compound designated heterobactin A by Carrano are of importance. • In addition, other heterobactins with ornithine in the backbone exist, e.g., the new heterobactin C.


Assuntos
Arsênio , Rhodococcus , Ferro , Sideróforos
3.
Ecotoxicol Environ Saf ; 157: 176-181, 2018 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-29621709

RESUMO

The metalloid arsenic is highly toxic to all forms of life, and in many countries decontamination of water and soil is still required. Some bacteria have mechanisms to detoxify arsenic and can live in its presence. Actinobacteria are well known for their ability to produce a myriad of biologically-active compounds. In the present study, we isolated arsenic-tolerant Actinobacteria from contaminated water in Saxony, Germany, and determined their ability to produce siderophores able to bind arsenic. The binding capacity of different siderophore-like compounds was determined by a modified chrome azurol S (As-mCAS) assay with As(III) at high pH and using CAS decolorization as a readout. Arsenic-tolerant isolates from three actinobacterial genera were identified by 16 S rRNA gene sequence analysis: Rhodococcus, Arthrobacter and Kocuria. The isolated Actinobacteria showed a high As(III)-binding activity by siderophore-like compounds, resulting in 82-100% CAS decolorization, as compared to the results with EDTA. The interaction between As(III) and siderophore-like compounds was also detected at neutral pH. In summary, our results suggest that the isolated arsenic-tolerant Actinobacteria produce siderophores that bind arsenic, and open new perspectives on potential candidates for decontaminating environments with arsenic and for other biotechnological applications.


Assuntos
Actinobacteria/metabolismo , Arsênio/metabolismo , Poluentes Ambientais/metabolismo , Sideróforos/metabolismo , Actinobacteria/isolamento & purificação , Hidroxibenzoatos , Indicadores e Reagentes
4.
Appl Microbiol Biotechnol ; 101(2): 609-619, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27542380

RESUMO

Ene-reductases originating from extremophiles are gaining importance in the field of biocatalysis due to higher-stability properties. The genome of the acidophilic iron-oxidizing bacterium "Ferrovum" sp. JA12 was found to harbor a thermophilic-like ene-reductase (FOYE-1). The foye-1 gene was ligated into a pET16bp expression vector system, and the enzyme was produced in Escherichia coli BL21 (DE3; pLysS) cells in yields of 10 mg L-1. FOYE-1 showed remarkable activity and rates on N-phenylmaleimide and N-phenyl-2-methylmaleimide (up to 89 U mg-1, >97 % conversion, 95 % (R)-selective) with both nicotinamide cofactors, NADPH and NADH. The catalytic efficiency with NADPH was 27 times higher compared to NADH. At the temperature maximum (50 °C) and pH optimum (6.5), activity was almost doubled to 160 U mg-1. These findings accomplish FOYE-1 for a valuable biocatalyst in the synthesis of succinimides. The appearance of a thermophilic-like ene-reductase in an acidic habitat is discussed with respect to its phylogenetic placement and to the genomic neighborhood of the encoding gene, awarding FOYE-1 a putative involvement in a quorum-sensing process.


Assuntos
Betaproteobacteria/enzimologia , Betaproteobacteria/genética , Genoma Bacteriano , Oxirredutases/isolamento & purificação , Oxirredutases/metabolismo , Clonagem Molecular , Coenzimas/análise , Biologia Computacional , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Concentração de Íons de Hidrogênio , Cinética , Maleimidas/metabolismo , Oxirredutases/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Succinimidas/metabolismo , Temperatura
5.
Int J Syst Evol Microbiol ; 65(9): 3008-3015, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26040579

RESUMO

Strain Kp5.2(T) is an aerobic, Gram-negative soil bacterium that was isolated in Freiberg, Saxony, Germany. The cells were motile and rod-shaped. Optimal growth was observed at 20-30 °C. The fatty acids of strain Kp5.2(T) comprised mainly C18 : 1ω7c and summed feature 3 (C16 : 1ω7c/iso-C15 : 0 2-OH). The major respiratory quinone was Q-10. The major polar lipids of strain Kp5.2(T) were phosphatidylethanolamine, diphosphatidylglycerol, phosphatidylglycerol, phosphatidylcholine and sphingoglycolipid. The G+C content of the genomic DNA was 63.7%. Sequencing of the 16S rRNA gene of strain Kp5.2(T) allowed its classification into the family Sphingomonadaceae, and the sequence showed the highest similarity to those of members of the genus Sphingopyxis, with Sphingopyxis italica SC13E-S71(T) (99.15% similarity), Sphingopyxis panaciterrae Gsoil 124(T) (98.96%), Sphingopyxis chilensis S37(T) (98.90%) and Sphingopyxis bauzanensis BZ30(T) (98.51%) as the nearest neighbours. DNA-DNA hybridization and further characterization revealed that strain Kp5.2(T) can be considered to represent a novel species of the genus Sphingopyxis. Hence, the name Sphingopyxis fribergensis sp. nov. is proposed, with the type strain Kp5.2(T) ( = DSM 28731(T) = LMG 28478(T)).


Assuntos
Fenilacetatos/metabolismo , Filogenia , Microbiologia do Solo , Sphingomonadaceae/classificação , Estireno/metabolismo , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Alemanha , Dados de Sequência Molecular , Hibridização de Ácido Nucleico , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Sphingomonadaceae/genética , Sphingomonadaceae/isolamento & purificação , Ubiquinona/química
6.
Mol Microbiol ; 88(2): 254-67, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23421784

RESUMO

The actinobacterium Rhodococcus opacus 1CP possesses a so far unique variant of the modified 3-oxoadipate pathway for 3-chlorocatechol degradation. One important feature is the novel dehalogenase ClcF, which converts (4R,5S)-5-chloromuconolactone to E-dienelactone. ClcF is related to muconolactone isomerase (MLI, EC 5.3.3.4). The enzyme has a ferredoxin-type fold and forms a homodecamer of 52-symmetry, typical for the MLI family. The active site is formed by residues from two monomers. The complex structure of an E27A variant with bound substrate in conjunction with mutational studies indicate that E27 acts as the proton acceptor in a univalent single-base syn-dehydrohalogenation mechanism. Despite the evolutionary specialization of ClcF, the conserved active-site structures suggest that the proposed mechanism is representative for the MLI family. Furthermore, ClcF represents a novel type of dehalogenase based on an isomerase scaffold.


Assuntos
4-Butirolactona/análogos & derivados , Hidrolases/química , Hidrolases/metabolismo , Lactonas/metabolismo , Rhodococcus/enzimologia , 4-Butirolactona/química , 4-Butirolactona/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Catálise , Cristalização , Cristalografia por Raios X , Análise Mutacional de DNA , Hidrolases/genética , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Rhodococcus/classificação , Rhodococcus/genética , Alinhamento de Sequência
7.
Microbiology (Reading) ; 160(Pt 11): 2481-2491, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25187627

RESUMO

Styrene oxide isomerase (SOI) catalyses the isomerization of styrene oxide to phenylacetaldehyde. The enzyme is involved in the aerobic styrene catabolism via side-chain oxidation and allows the biotechnological production of flavours. Here, we reported the isolation of new styrene-degrading bacteria that allowed us to identify novel SOIs. Out of an initial pool of 87 strains potentially utilizing styrene as the sole carbon source, just 14 were found to possess SOI activity. Selected strains were classified phylogenetically based on 16S rRNA genes, screened for SOI genes and styrene-catabolic gene clusters, as well as assayed for SOI production and activity. Genome sequencing allowed bioinformatic analysis of several SOI gene clusters. The isolate Sphingopyxis sp. Kp5.2 was most interesting in that regard because to our knowledge this is the first time it was shown that a member of the family Sphingomonadaceae utilized styrene as the sole carbon source by side-chain oxidation. The corresponding SOI showed a considerable activity of 3.1 U (mg protein)(-1). Most importantly, a higher resistance toward product inhibition in comparison with other SOIs was determined. A phylogenetic analysis of SOIs allowed classification of these biocatalysts from various bacteria and showed the exceptional position of SOI from strain Kp5.2.


Assuntos
Proteínas de Bactérias/metabolismo , Isomerases/metabolismo , Sphingomonadaceae/enzimologia , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Estabilidade Enzimática , Isomerases/química , Isomerases/genética , Dados de Sequência Molecular , Filogenia , Alinhamento de Sequência , Microbiologia do Solo , Sphingomonadaceae/classificação , Sphingomonadaceae/genética , Sphingomonadaceae/isolamento & purificação , Estireno/metabolismo
8.
Arch Microbiol ; 196(12): 829-45, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25116410

RESUMO

Two styrene monooxygenase types, StyA/StyB and StyA1/StyA2B, have been described each consisting of an epoxidase and a reductase. A gene fusion which led to the chimeric reductase StyA2B and the occurrence in different phyla are major differences. Identification of SMOA/SMOB-ADP1 of Acinetobacter baylyi ADP1 may enlighten the gene fusion event since phylogenetic analysis indicated both proteins to be more related to StyA2B than to StyA/StyB. SMOB-ADP1 is classified like StyB and StyA2B as HpaC-like reductase. Substrate affinity and turnover number of the homo-dimer SMOB-ADP1 were determined for NADH (24 µM, 64 s(-1)) and FAD (4.4 µM, 56 s(-1)). SMOB-ADP1 catalysis follows a random sequential mechanism, and FAD fluorescence is quenched upon binding to SMOB-ADP1 (K d = 1.8 µM), which clearly distinguishes that reductase from StyB of Pseudomonas. In summary, this study confirmes made assumptions and provides phylogenetic and biochemical data for the differentiation of styrene monooxygenase-related flavin reductases.


Assuntos
Acinetobacter/enzimologia , FMN Redutase/química , FMN Redutase/metabolismo , Oxigenases/química , Oxigenases/metabolismo , Acinetobacter/genética , Sequência de Aminoácidos , Biocatálise , FMN Redutase/classificação , FMN Redutase/genética , Dados de Sequência Molecular , NAD/metabolismo , Oxirredutases/metabolismo , Oxigenases/classificação , Oxigenases/genética , Filogenia , Pseudomonas/enzimologia , Pseudomonas/genética
9.
Res Microbiol ; 175(1-2): 104088, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37348744

RESUMO

Efficient electron transfer from the donor to the acceptor couple presents a necessary requirement for acidophilic and neutrophilic iron oxidizers due to the low energy yield of aerobic ferrous iron oxidation. Involved periplasmic electron carriers are very diverse in these bacteria and show adaptations to the respective thermodynamic constraints such as a more positive redox potential reported for extreme acidophilic Acidithiobacillus spp. Respiratory chain candidates of moderately acidophilic members of the genus Ferrovum share similarities with both their neutrophilic iron oxidizing relatives and the more distantly related Acidithiobacillus spp. We examined our previous omics-based conclusions on the potential electron transfer chain in Ferrovum spp. by characterizing the three redox protein candidates CytC-18, CytC-78 and HiPIP-41 of strain PN-J47-F6 which were produced as recombinant proteins in Eschericha coli. UV/Vis-based redox assays suggested that HiPIP-41 has a very positive redox potential while redox potentials of CytC-18 and CytC-78 are more negative than their counterparts in Acidithiobacillus spp. Far Western dot blotting demonstrated interactions between all three recombinant redox proteins while redox assays showed the electron transfer from HiPIP-41 to either of the cytochromes. Altogether, CytC-18, CytC-78 and HiPIP-41 indeed represent very likely candidates of the electron transfer in Ferrovum sp. PN-J4-F6.


Assuntos
Betaproteobacteria , Ferro , Ferro/metabolismo , Elétrons , Oxirredução , Transporte de Elétrons , Betaproteobacteria/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
10.
Res Microbiol ; 175(1-2): 104150, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37926348

RESUMO

Many acidophilic iron-oxidizing bacteria used in the mining industry for the bioleaching of sulfidic minerals are intolerant to high chloride concentrations, resulting in problems where chloride occurs in the deposit at high concentrations or only seawater is available. In search for strains tolerating such conditions a tetrathionate- and iron-oxidizing bacterium was isolated from a tailings-contaminated beach sample at Portman Bay, Cartagena-La Union mining district, Spain, in the presence of 20 g l-1 (0.34 M) sodium chloride. The isolate was able to form spores, did not grow in the absence of NaCl, and oxidized ferrous iron in the presence of up to 1.5 M (∼87 g l-1) NaCl. Genome sequencing based on a combination of Illumina and PacBio reads revealed two contigs, a circular bacterial chromosome of 5.2 Mbp and a plasmid of 90 kbp, respectively. The chromosome comprised seven different 16S rRNA genes. Submission of the chromosome to the Type (Strain) Genome Server (TYGS) without preselection of similar sequences revealed exclusively type strains of the genus Alicyclobacillus. In the TYGS analyses the respective most similar species were dependent on whether the final tree was derived from just 16S rRNA, from the genomes, or from the proteomes. Thus, TYGS analysis clearly showed that isolate SO9 represents a novel species of the genus Alicyclobacillus. In the presence of artificial seawater with almost 0.6 M chloride, the addition of Alicyclobacillus sp. SO9 improved copper dissolution from chalcopyrite (CuFeS2) compared to abiotic leaching without bacteria. The new isolate SO9, therefore, has potential for bioleaching at elevated chloride concentrations.


Assuntos
Alicyclobacillus , Ferro , Cobre , Alicyclobacillus/genética , Cloretos , Cloreto de Sódio , RNA Ribossômico 16S/genética , Bactérias/genética , Oxirredução , Filogenia
11.
Appl Environ Microbiol ; 78(12): 4330-7, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22504818

RESUMO

Styrene oxide isomerase (SOI) is involved in peripheral styrene catabolism of bacteria and converts styrene oxide to phenylacetaldehyde. Here, we report on the identification, enrichment, and biochemical characterization of a novel representative from the actinobacterium Rhodococcus opacus 1CP. The enzyme, which is strongly induced during growth on styrene, was shown to be membrane integrated, and a convenient procedure was developed to highly enrich the protein in active form from the wild-type host. A specific activity of about 370 U mg(-1) represents the highest activity reported for this enzyme class so far. This, in combination with a wide pH and temperature tolerance, the independence from cofactors, and the ability to convert a spectrum of substituted styrene oxides, makes a biocatalytic application imaginable. First, semipreparative conversions were performed from which up to 760 µmol of the pure phenylacetaldehyde could be obtained from 130 U of enriched SOI. Product concentrations of up to 76 mM were achieved. However, due to the high chemical reactivity of the aldehyde function, SOI was shown to be the subject of an irreversible product inhibition. A half-life of 15 min was determined at a phenylacetaldehyde concentration of about 55 mM, indicating substantial limitations of applicability and the need to modify the process.


Assuntos
Isomerases/metabolismo , Proteínas de Membrana/metabolismo , Rhodococcus/enzimologia , Coenzimas/metabolismo , Estabilidade Enzimática , Compostos de Epóxi/metabolismo , Concentração de Íons de Hidrogênio , Isomerases/química , Isomerases/isolamento & purificação , Proteínas de Membrana/química , Proteínas de Membrana/isolamento & purificação , Fenilacetatos/metabolismo , Rhodococcus/química , Especificidade por Substrato , Temperatura
12.
Arch Biochem Biophys ; 526(1): 69-77, 2012 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-22842338

RESUMO

Chloromuconolactone dehalogenase ClcF plays a unique role in 3-chlorocatechol degradation by Rhodococcus opacus 1CP by compensating the inability of its chloromuconate cycloisomerase ClcB2 to dechlorinate the chemically stable cycloisomerization product (4R,5S)-5-chloromuconolactone (5CML). High sequence similarities showed relatedness of ClcF to muconolactone isomerases (MLIs, EC 5.3.3.4) of the 3-oxoadipate pathway. Although both enzyme types share the ability to dechlorinate 5CML, comparison of kcat/Km indicated a significant extent of specialization of ClcF for dechlorination. This assumption was substantiated by an almost complete inability of ClcF to convert (4S)-muconolactone and the exclusive formation of cis-dienelactone from 5CML. Mutational analysis of ClcF by means of variants E27D, E27Q, Y50A, N52A, and A89S indicated relevance of some highly conserved residues for substrate binding and catalysis. Based on the putative isomerization mechanism of MLI, evidence was provided for a role of E27 in initial proton abstraction as well as of Y50 and N52 in substrate binding. In case of N52 substrate binding is likely to occur to the carboxylic group of 5CML as indicated by a significant change of product specificity. Expression in Escherichia coli BL21-CP(DE)-RIL followed by a three-step purification procedure with heat treatment is a convenient strategy to obtain recombinant ClcF and variants thereof.


Assuntos
Biocatálise , Hidrolases/genética , Hidrolases/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Rhodococcus/enzimologia , Rhodococcus/genética , Sequência de Aminoácidos , Proteínas de Bactérias/metabolismo , Isomerases de Ligação Dupla Carbono-Carbono/metabolismo , Domínio Catalítico , Clonagem Molecular , Sequência Conservada , Cristalografia por Raios X , Cupriavidus necator/enzimologia , Análise Mutacional de DNA , Expressão Gênica , Hidrolases/química , Hidrolases/isolamento & purificação , Cinética , Lactonas/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação
13.
Arch Microbiol ; 194(7): 623-35, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22350109

RESUMO

In the present study cultivation-dependent and molecular methods were applied in combination to investigate the arsenite-oxidizing communities in enrichment cultures from arsenic and lead smelter-impacted soils with respect to both 16S rRNA and arsenite oxidase gene diversity. Enrichments with arsenite as the only electron donor resulted in completely different communities than enrichments with yeast extract and the simultaneous presence of arsenite. The lithoautotrophic community appeared to be dominated by Ferrimicrobium-related Actinobacteria, unusual Acidobacteria, Myxobacteria, and α-Proteobacteria but the heterotrophic community comprised many Dokdonella-related γ-Proteobacteria. Gene sequences of clones encoding arsenite oxidase from the enrichment for lithoautotrophs belonged to three major clusters with sequences from non-cultivated microorganisms. So, primers used to detect arsenite oxidase genes could amplify the genes from many α-, ß- and γ-Proteobacteria, but not from various strains of the other phyla present in the enrichment for lithotrophs. This was also observed for the isolates where arsenite oxidase genes from new proteobacterial isolates of the genera Burkholderia, Bosea, Alcaligenes, Bradyrhizobium and Methylobacterium could be amplified but the genes of the new Rhodococcus isolate S43 could not. The results indicate that the ability to oxidize arsenite is widespread in various unusual taxa, and molecular methods for their detection require further improvement.


Assuntos
Arsenitos/metabolismo , Bactérias/classificação , Bactérias/enzimologia , Variação Genética , Oxirredutases/genética , Filogenia , Microbiologia do Solo , Arsênio , Primers do DNA , Dados de Sequência Molecular , Oxirredutases/metabolismo , Polimorfismo de Fragmento de Restrição , RNA Ribossômico 16S/genética , Poluentes do Solo/metabolismo
14.
Artigo em Inglês | MEDLINE | ID: mdl-22691795

RESUMO

Chloroaromatic compounds are often very persistent environmental pollutants. Nevertheless, numerous bacteria are able to metabolize these compounds and to utilize them as sole energy and carbon sources. Rhodococcus opacus 1CP is able to degrade several chloroaromatic compounds, some of them via a variation of the 3-chlorocatechol branch of the modified ortho-cleavage pathway. This branch in R. opacus differs from that in Proteobacteria in the inability of the chloromuconate cycloisomerase to dehalogenate. Instead, a unique enzyme designated as chloromuconolactone dehalogenase (ClcF) is recruited. ClcF dehalogenates 5-chloromuconolactone to cis-dienelactone and shows a high similarity to muconolactone isomerases (EC 5.3.3.4). However, unlike the latter enzymes, it is unable to catalyse the isomerization of muconolactone to 3-oxoadipate enollactone. In order to characterize the catalytic mechanism of this unusual dehalogenase, the enzyme was crystallized and subjected to X-ray structural analysis. Data sets to up to 1.65 Šresolution were collected from two different crystal forms using synchrotron radiation. Crystal form I (space group P2(1)) contained 40 subunits in the asymmetric unit, whereas ten subunits were present in crystal form II (space group P2(1)2(1)2(1)). The self-rotation function revealed the orientations of the molecular symmetry axes of the homodecamer of 52 symmetry.


Assuntos
Hidrolases/química , Rhodococcus/enzimologia , 4-Butirolactona/análogos & derivados , 4-Butirolactona/química , 4-Butirolactona/metabolismo , Cristalização , Hidrolases/metabolismo
15.
PLoS One ; 17(4): e0267316, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35486621

RESUMO

Chloride ions are toxic for most acidophilic microorganisms. In this study, the chloride tolerance mechanisms in the acidophilic iron-oxidizing bacterium Leptospirillum ferriphilum DSM 14647 adapted to 180 mM NaCl were investigated by a transcriptomic approach. Results showed that 99 genes were differentially expressed in the adapted versus the non-adapted cultures, of which 69 and 30 were significantly up-regulated or down-regulated, respectively. Genes that were up-regulated include carbonic anhydrase, cytochrome c oxidase (ccoN) and sulfide:quinone reductase (sqr), likely involved in intracellular pH regulation. Towards the same end, the cation/proton antiporter CzcA (czcA) was down-regulated. Adapted cells showed a higher oxygen consumption rate (2.2 x 10-9 ppm O2 s-1cell-1) than non-adapted cells (1.2 x 10-9 ppm O2 s-1cell-1). Genes coding for the antioxidants flavohemoprotein and cytochrome c peroxidase were also up-regulated. Measurements of the intracellular reactive oxygen species (ROS) level revealed that adapted cells had a lower level than non-adapted cells, suggesting that detoxification of ROS could be an important strategy to withstand NaCl. In addition, data analysis revealed the up-regulation of genes for Fe-S cluster biosynthesis (iscR), metal reduction (merA) and activation of a cellular response mediated by diffusible signal factors (DSFs) and the second messenger c-di-GMP. Several genes related to the synthesis of lipopolysaccharide and peptidoglycan were consistently down-regulated. Unexpectedly, the genes ectB, ectC and ectD involved in the biosynthesis of the compatible solutes (hydroxy)ectoine were also down-regulated. In line with these findings, although hydroxyectoine reached 20 nmol mg-1 of wet biomass in non-adapted cells, it was not detected in L. ferriphilum adapted to NaCl, suggesting that this canonical osmotic stress response was dispensable for salt adaptation. Differentially expressed transcripts and experimental validations suggest that adaptation to chloride in acidophilic microorganisms involves a multifactorial response that is different from the response in other bacteria studied.


Assuntos
Cloretos , Cloreto de Sódio , Bactérias/genética , Halogênios , Espécies Reativas de Oxigênio , Transcriptoma
16.
Microbiology (Reading) ; 157(Pt 6): 1551-1564, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21511765

RESUMO

The 'iron bacteria' are a collection of morphologically and phylogenetically heterogeneous prokaryotes. They include some of the first micro-organisms to be observed and described, and continue to be the subject of a considerable body of fundamental and applied microbiological research. While species of iron-oxidizing bacteria can be found in many different phyla, most are affiliated with the Proteobacteria. The latter can be subdivided into four main physiological groups: (i) acidophilic, aerobic iron oxidizers; (ii) neutrophilic, aerobic iron oxidizers; (iii) neutrophilic, anaerobic (nitrate-dependent) iron oxidizers; and (iv) anaerobic photosynthetic iron oxidizers. Some species (mostly acidophiles) can reduce ferric iron as well as oxidize ferrous iron, depending on prevailing environmental conditions. This review describes what is currently known about the phylogenetic and physiological diversity of the iron-oxidizing proteobacteria, their significance in the environment (on the global and micro scales), and their increasing importance in biotechnology.


Assuntos
Ferro/metabolismo , Filogenia , Proteobactérias/fisiologia , Biotecnologia , Microbiologia Ambiental , Oxirredução , Proteobactérias/classificação , Proteobactérias/genética
17.
Environ Sci Technol ; 45(18): 7685-92, 2011 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-21838259

RESUMO

Schwertmannite has previously been found in iron- and sulfate-rich mine waters at pH 2.8-4.5. In the present study, schwertmannite (Fe(8)O(8)(OH)(6)SO(4)) was shown to be the major mineral in a mine water treatment plant at pH 3, in which ferrous iron is mainly oxidized by bacteria belonging to the species Ferrovum myxofaciens. Strain EHS6, which is closely related to the type strain of Fv. myxofaciens, was isolated from the pilot plant and characterized as an acidophilic, iron-oxidizing bacterium. In contrast to the pilot plant, the mineral phase formed by a pure culture of Fv. myxofaciens EHS6 was a mixture of schwertmannite and jarosite (KFe(3)(SO(4))(2)(OH)(6)). In contrast to other reports of neutrophilic, iron-oxidizing bacteria, acidophilic microorganisms in the pilot plant and cultures of strain EHS6 did not show encrustation of the cell surface or deposition of minerals inside the cell, though a few cells appeared to be in contact with jarosite crystals. It was concluded that no direct biomineralization occurred in the pilot plant or in laboratory cultures. The lack of encrustation of bacterial cells in the pilot plant is considered advantageous since the cells are still able to get in contact with ferrous iron and the iron oxidation process in the mine water treatment plant can proceed.


Assuntos
Betaproteobacteria/fisiologia , Compostos Ferrosos/metabolismo , Resíduos Industriais , Compostos de Ferro/metabolismo , Mineração , Betaproteobacteria/isolamento & purificação , Betaproteobacteria/ultraestrutura , DNA Bacteriano/genética , Compostos de Ferro/análise , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Oxirredução , Análise de Sequência de DNA , Espectrometria por Raios X , Espectrofotometria Atômica , Eliminação de Resíduos Líquidos , Difração de Raios X
18.
Appl Biochem Biotechnol ; 193(3): 650-667, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33106986

RESUMO

Four phenylacetaldehyde dehydrogenases (designated as FeaB or StyD) originating from styrene-degrading soil bacteria were biochemically investigated. In this study, we focused on the Michaelis-Menten kinetics towards the presumed native substrate phenylacetaldehyde and the obviously preferred co-substrate NAD+. Furthermore, the substrate specificity on four substituted phenylacetaldehydes and the co-substrate preference were studied. Moreover, these enzymes were characterized with respect to their temperature as well as long-term stability. Since aldehyde dehydrogenases are known to show often dehydrogenase as well as esterase activity, we tested this capacity, too. Almost all results showed clearly different characteristics between the FeaB and StyD enzymes. Furthermore, FeaB from Sphingopyxis fribergensis Kp5.2 turned out to be the most active enzyme with an apparent specific activity of 17.8 ± 2.1 U mg-1. Compared with that, both StyDs showed only activities less than 0.2 U mg-1 except the overwhelming esterase activity of StyD-CWB2 (1.4 ± 0.1 U mg-1). The clustering of both FeaB and StyD enzymes with respect to their characteristics could also be mirrored in the phylogenetic analysis of twelve dehydrogenases originating from different soil bacteria.


Assuntos
Aldeído Oxirredutases/química , Proteínas de Bactérias/química , Proteínas de Escherichia coli/química , Microbiologia do Solo , Sphingomonadaceae/enzimologia , Estireno/metabolismo
19.
Chemosphere ; 285: 131466, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34271468

RESUMO

Here, we explore effects of metallophore-producing rhizobacteria on the plant availability of germanium (Ge) and rare earth elements (REEs). Five isolates of the four species Rhodococcus erythropolis, Arthrobacter oxydans, Kocuria rosea and Chryseobacterium koreense were characterized regarding their production of element-chelators using genome-mining, LC-MS/MS analysis and solid CAS-assay. Additionally, a soil elution experiment was conducted in order to identify isolates that increase solubility of Ge and REEs in soil solution. A. oxydans ATW2 and K. rosea ATW4 released desferrioxamine-, bacillibactin- and surfactin-like compounds that mobilized Ge and REEs as well as P, Fe, Si and Ca in soil. Subsequently, oat, rapeseed and reed canary grass were cultivated on soil and sand and treated with cells and iron depleted culture supernatants of A. oxydans ATW2 and K. rosea ATW4. Inoculation increased plant yield and shoot phosphorus (P), manganese (Mn), Ge and REE concentrations. However, effects of the inoculation varied substantially between the growth substrates and plant species. On sand, A. oxydans ATW2 increased accumulation of REEs in all plant species and root-shoot translocation in rapeseed, while K. rosea ATW4 enhanced REE accumulation in rapeseed only, without effects on other plant species. Sand-cultured oat plants showed increased Ge accumulation and root-shoot translocation in presence of A. oxydans ATW2 cells and K. rosea ATW4 supernatant; however, there was no effect on other plant species, irrespective the growth substrate used. In contrast, soil-cultured rapeseed showed enhanced REE accumulation in presence of cells of A. oxydans ATW2 while there were no effects on other plant species and Ge. The processes involved are not yet fully understood. Nevertheless, we demonstrated that chemical microbe-soil-plant relationships influence plant availability of nutrients together with Ge and REEs, which has major implications on our understanding of biogeochemical element cycling and development of sustainable bioremediation and biomining technologies.


Assuntos
Germânio , Metais Terras Raras , Micrococcaceae , Poluentes do Solo , Cromatografia Líquida , Chryseobacterium , Metais Terras Raras/análise , Rizosfera , Rhodococcus , Solo , Poluentes do Solo/análise , Espectrometria de Massas em Tandem
20.
J Bacteriol ; 192(19): 5220-7, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20675468

RESUMO

Two-component flavoprotein monooxygenases are emerging biocatalysts that generally consist of a monooxygenase and a reductase component. Here we show that Rhodococcus opacus 1CP encodes a multifunctional enantioselective flavoprotein monooxygenase system composed of a single styrene monooxygenase (SMO) (StyA1) and another styrene monooxygenase fused to an NADH-flavin oxidoreductase (StyA2B). StyA1 and StyA2B convert styrene and chemical analogues to the corresponding epoxides at the expense of FADH2 provided from StyA2B. The StyA1/StyA2B system presents the highest monooxygenase activity in an equimolar ratio of StyA1 and StyA2B, indicating (transient) protein complex formation. StyA1 is also active when FADH2 is supplied by StyB from Pseudomonas sp. VLB120 or PheA2 from Rhodococcus opacus 1CP. However, in both cases the reductase produces an excess of FADH2, resulting in a high waste of NADH. The epoxidation rate of StyA1 heavily depends on the type of reductase. This supports that the FADH2-induced activation of StyA1 requires interprotein communication. We conclude that the StyA1/StyA2B system represents a novel type of multifunctional flavoprotein monooxygenase. Its unique mechanism of cofactor utilization provides new opportunities for biotechnological applications and is highly relevant from a structural and evolutionary point of view.


Assuntos
Proteínas de Bactérias/metabolismo , FMN Redutase/metabolismo , Oxigenases/metabolismo , Rhodococcus/metabolismo , Proteínas de Bactérias/genética , Cromatografia Líquida de Alta Pressão , FMN Redutase/genética , Modelos Biológicos , Dados de Sequência Molecular , Estrutura Molecular , Oxigenases/genética , Rhodococcus/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA