Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell Rep ; 13(11): 2412-2424, 2015 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-26686632

RESUMO

Whether aged hematopoietic stem and progenitor cells (HSPCs) have impaired DNA damage repair is controversial. Using a combination of DNA mutation indicator assays, we observe a 2- to 3-fold increase in the number of DNA mutations in the hematopoietic system upon aging. Young and aged hematopoietic stem cells (HSCs) and hematopoietic progenitor cells (HPCs) do not show an increase in mutation upon irradiation-induced DNA damage repair, and young and aged HSPCs respond very similarly to DNA damage with respect to cell-cycle checkpoint activation and apoptosis. Both young and aged HSPCs show impaired activation of the DNA-damage-induced G1-S checkpoint. Induction of chronic DNA double-strand breaks by zinc-finger nucleases suggests that HSPCs undergo apoptosis rather than faulty repair. These data reveal a protective mechanism in both the young and aged hematopoietic system against accumulation of mutations in response to DNA damage.


Assuntos
Envelhecimento , Genoma , Células-Tronco Hematopoéticas/metabolismo , Sequência de Aminoácidos , Animais , Apoptose/efeitos da radiação , Células da Medula Óssea/citologia , Transplante de Medula Óssea , Células Cultivadas , Quinase do Ponto de Checagem 2/genética , Quinase do Ponto de Checagem 2/metabolismo , Dano ao DNA/efeitos da radiação , Endodesoxirribonucleases/genética , Endodesoxirribonucleases/metabolismo , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos da radiação , Raios gama , Células-Tronco Hematopoéticas/citologia , Perda de Heterozigosidade , Camundongos , Camundongos Endogâmicos C57BL , Mutação , Pontos de Checagem da Fase S do Ciclo Celular/efeitos da radiação , Transplante Homólogo , Irradiação Corporal Total
2.
Nat Med ; 16(10): 1141-6, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20871610

RESUMO

Mobilization of hematopoietic stem and progenitor cells (HSPCs) from bone marrow into peripheral blood by the cytokine granulocyte colony-stimulating factor (G-CSF) has become the preferred source of HSPCs for stem cell transplants. However, G-CSF fails to mobilize sufficient numbers of stem cells in up to 10% of donors, precluding autologous transplantation in those donors or substantially delaying transplant recovery time. Consequently, new regimens are needed to increase the number of stem cells in peripheral blood upon mobilization. Using a forward genetic approach in mice, we mapped the gene encoding the epidermal growth factor receptor (Egfr) to a genetic region modifying G-CSF-mediated HSPC mobilization. Amounts of EGFR in HSPCs inversely correlated with the cells' ability to be mobilized by G-CSF, implying a negative role for EGFR signaling in mobilization. In combination with G-CSF treatment, genetic reduction of EGFR activity in HSPCs (in waved-2 mutant mice) or treatment with the EGFR inhibitor erlotinib increased mobilization. Increased mobilization due to suppression of EGFR activity correlated with reduced activity of cell division control protein-42 (Cdc42), and genetic Cdc42 deficiency in vivo also enhanced G-CSF-induced mobilization. Our findings reveal a previously unknown signaling pathway regulating stem cell mobilization and provide a new pharmacological approach for improving HSPC mobilization and thereby transplantation outcomes.


Assuntos
Receptores ErbB/antagonistas & inibidores , Fator Estimulador de Colônias de Granulócitos/farmacologia , Mobilização de Células-Tronco Hematopoéticas , Transdução de Sinais , Animais , Fator de Crescimento Epidérmico/farmacologia , Receptores ErbB/fisiologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Proteína cdc42 de Ligação ao GTP/fisiologia
3.
Blood ; 111(4): 2190-9, 2008 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-17975013

RESUMO

Chromosomal translocation (8;21) is present in 10% to 15% of patients with acute myeloid leukemia. Expression of the AML1-ETO (AE) fusion protein alone is not sufficient to induce leukemia, but the nature of the additional genetic alterations is unknown. It is unclear whether AE facilitates acquisition of these cooperating events. We show that AE down-regulates genes involved in multiple DNA repair pathways, potentially through a mechanism involving direct binding at promoter elements, and increases the mutation frequency in vivo. AE cells display increased DNA damage in vitro and have an activated p53 pathway. This results in increased basal apoptosis and enhanced sensitivity to DNA damaging agents. Intriguingly, microarray data indicate that t(8;21) patient samples exhibit decreased expression of DNA repair genes and increased expression of p53 response genes compared with other acute myeloid leukemia (AML) patient samples. Inhibition of the p53 pathway by RNAi increases the resistance of AE cells to DNA damage. We thus speculate that AML1-ETO may facilitate accumulation of genetic alterations by suppressing endogenous DNA repair. It is possible that the superior outcome of t(8;21) patients is partly due to an activated p53 pathway, and that loss of the p53 response pathway is associated with disease progression.


Assuntos
Morte Celular/fisiologia , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Dano ao DNA , Proteínas de Fusão Oncogênica/genética , Proteína Supressora de Tumor p53/fisiologia , Antígenos CD/sangue , Antígenos CD34/sangue , Sequência de Bases , Divisão Celular , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Reparo do DNA/genética , Sangue Fetal/citologia , Humanos , Recém-Nascido , Dados de Sequência Molecular , Análise de Sequência com Séries de Oligonucleotídeos , Proteínas de Fusão Oncogênica/metabolismo , Proteína 1 Parceira de Translocação de RUNX1 , Proteína Supressora de Tumor p53/genética
4.
Cancer Res ; 68(15): 6171-80, 2008 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-18676840

RESUMO

Retroviral-mediated delivery of the P140K mutant O(6)-methylguanine-DNA methyltransferase (MGMT(P140K)) into hematopoietic stem cells (HSC) has been proposed as a means to protect against dose-limiting myelosuppressive toxicity ensuing from chemotherapy combining O(6)-alkylating agents (e.g., temozolomide) with pseudosubstrate inhibitors (such as O(6)-benzylguanine) of endogenous MGMT. Because detoxification of O(6)-alkylguanine adducts by MGMT is stoichiometric, it has been suggested that higher levels of MGMT will afford better protection to gene-modified HSC. However, accomplishing this goal would potentially be in conflict with current efforts in the gene therapy field, which aim to incorporate weaker enhancer elements to avoid insertional mutagenesis. Using a panel of self-inactivating gamma-retroviral vectors that express a range of MGMT(P140K) activity, we show that MGMT(P140K) expression by weaker cellular promoter/enhancers is sufficient for in vivo protection/selection following treatment with O(6)-benzylguanine/temozolomide. Conversely, the highest level of MGMT(P140K) activity did not promote efficient in vivo protection despite mediating detoxification of O(6)-alkylguanine adducts. Moreover, very high expression of MGMT(P140K) was associated with a competitive repopulation defect in HSC. Mechanistically, we show a defect in cellular proliferation associated with elevated expression of MGMT(P140K), but not wild-type MGMT. This proliferation defect correlated with increased localization of MGMT(P140K) to the nucleus/chromatin. These data show that very high expression of MGMT(P140K) has a deleterious effect on cellular proliferation, engraftment, and chemoprotection. These studies have direct translational relevance to ongoing clinical gene therapy studies using MGMT(P140K), whereas the novel mechanistic findings are relevant to the basic understanding of DNA repair by MGMT.


Assuntos
Células-Tronco Hematopoéticas/enzimologia , O(6)-Metilguanina-DNA Metiltransferase/metabolismo , Animais , Ensaio Cometa , Imunofluorescência , Vetores Genéticos , Camundongos , Camundongos Endogâmicos C57BL , Retroviridae/genética , Transdução Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA