Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 233
Filtrar
1.
Acc Chem Res ; 49(6): 1191-9, 2016 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-27268321

RESUMO

The classic SEAr mechanism of electrophilic aromatic substitution (EAS) reactions described in textbooks, monographs, and reviews comprises the obligatory formation of arenium ion intermediates (σ complexes) in a two-stage process. Our findings from several studies of EAS reactions challenge the generality of this mechanistic paradigm. This Account focuses on recent computational and experimental results for three types of EAS reactions: halogenation with molecular chlorine and bromine, nitration by mixed acid (mixture of nitric and sulfuric acids), and sulfonation with SO3. Our combined computational and experimental investigation of the chlorination of anisole with molecular chlorine in CCl4 found that addition-elimination pathways compete with the direct substitution processes. Detailed NMR investigation of the course of experimental anisole chlorination at varying temperatures revealed the formation of addition byproducts. Moreover, in the absence of Lewis acid catalysis, the direct halogenation processes do not involve arenium ion intermediates but instead proceed via concerted single transition states. We also obtained analogous results for the chlorination and bromination of several arenes in nonpolar solvents. We explored by theoretical computations and experimental spectroscopic studies the classic reaction of benzene nitration by mixed acid. The structure of the first intermediate in this process has been a subject of contradicting views. We have reported clear experimental UV/vis spectroscopic evidence for the formation of the first intermediate in this reaction. Our broader theoretical modeling of the process considers the effects of the medium as a bulk solvent but also the specific interactions of a H2SO4 solvent molecule with intermediates and transition states along the reaction path. In harmony with the obtained spectroscopic data, our computational results reveal that the structure of the initial π complex precludes the possibility of electronic charge transfer from the benzene π system to the nitronium unit. In contrast to usual interpretations, our computational results provide compelling evidence that in nonpolar, noncomplexing media and in the absence of catalysts, the mechanism of aromatic sulfonation with sulfur trioxide is concerted and does not involve the conventional σ-complex (Wheland) intermediates. Stable under such conditions, (SO3)2 dimers react with benzene much more readily than monomeric sulfur trioxide. In polar (complexing) media, the reaction follows the classic two-stage SEAr mechanism. Still, the rate-controlling transition state involves two SO3 molecules. The reactivity and regioselectivity in EAS reactions that follow the classic mechanistic scheme are quantified using a theoretically evaluated quantity, the electrophile affinity (Eα), which measures the stabilization energy associated with the formation of arenium ions. Examples of applications are provided.

2.
Proc Natl Acad Sci U S A ; 111(28): 10067-72, 2014 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-24972792

RESUMO

Our computational and experimental investigation of the reaction of anisole with Cl2 in nonpolar CCl4 solution challenges two fundamental tenets of the traditional SEAr (arenium ion) mechanism of aromatic electrophilic substitution. Instead of this direct substitution process, the alternative addition-elimination (AE) pathway is favored energetically. This AE mechanism rationalizes the preferred ortho and para substitution orientation of anisole easily. Moreover, neither the SEAr nor the AE mechanisms involve the formation of a σ-complex (Wheland-type) intermediate in the rate-controlling stage. Contrary to the conventional interpretations, the substitution (SEAr) mechanism proceeds concertedly via a single transition state. Experimental NMR investigations of the anisole chlorination reaction course at various temperatures reveal the formation of tetrachloro addition by-products and thus support the computed addition-elimination mechanism of anisole chlorination in nonpolar media. The important autocatalytic effect of the HCl reaction product was confirmed by spectroscopic (UV-visible) investigations and by HCl-augmented computational modeling.

3.
J Org Chem ; 81(5): 1885-98, 2016 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-26783848

RESUMO

Strategies to construct zwitterionic anions from the parent anions are proposed. Two principles are employed; the cationic counterpart is (a) attached as a substituent or (b) inserted as an integral part at a remote location in the assembly. The optimized geometries reveal that a striking similarity exists between the zwitterions and the respective precursor parent anion. The computed vibrational frequencies emphasize that these novel entities are minima on their respective potential energy surfaces. A substantial HOMO-LUMO gap indicates that the proposed structures do not show instability in their respective electronic states and that the higher energy configuration states do not contribute to the ground state viability. The separation of charge between the monopoles in these zwitterions is demonstrated by moderately large nonzero dipole moments. Significant large energy barriers for rearrangement to the closely related positional isomers, demonstrated in a few cases, advocate the thermal stability (associated with spectroscopic viability) of the novel molecules. The donor capacity (basicity) of the anionic subunit in these zwitterions is comparable to that of the respective parent anions. Since the qualitative and quantitative features in the designed charged compensated complexes are conserved as anions, these molecules may perhaps be employed in synthetic organic or organometallic chemistry.

4.
Chem Soc Rev ; 43(14): 4909-21, 2014 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-24638823

RESUMO

Aromaticity is an essential concept in chemistry, employed to account for the unusual stability, reactivity, molecular structures, and other properties of many unsaturated organic compounds. This concept was later extended to inorganic molecules and to saturated systems with mobile electrons, as well as to transition structures, the focus of the present review. Although transition structures are inherently delocalized, not all exhibit aromaticity. We contrast here examples of pericyclic reaction transition structures (where aromaticity is significant) with those for illustrative pseudo-pericyclic reactions (where aromaticity is less or not important). Non-pericyclic reactions may also have aromatic transition structures. State-of-the-art computational methods to evaluate the aromaticity of transition structures are described briefly.

6.
Angew Chem Int Ed Engl ; 54(47): 14123-7, 2015 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-26404418

RESUMO

Experimental evidence is reported for the first intermediate in the classic SEAr reaction of benzene nitration with mixed acid. The UV/Vis spectroscopic investigation of the reaction showed an intense absorption at 320 nm (appearing as a band shoulder) arising from a reaction intermediate. Our theoretical modeling shows that the interaction between the two principal reactants with solvent (H2SO4) molecules significantly affects the structure of the initial complex. In this complex, a larger distance between the aromatic ring and nitronium ion precludes the possibility for electronic charge transfer from the benzene π-system to the electrophile. The computational modeling of the potential energy surface reveals that the reaction favors a stepwise mechanism with intermediate formation of π- and σ-(arenium ion) complexes.

7.
Angew Chem Int Ed Engl ; 54(33): 9468-501, 2015 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-26119555

RESUMO

The idea of planar tetracoordinate carbon (ptC) was considered implausible for a hundred years after 1874. Examples of ptC were then predicted computationally and realized experimentally. Both electronic and mechanical (e.g., small rings and cages) effects stabilize these unusual bonding arrangements. Concepts based on the bonding motifs of planar methane and the planar methane dication can be extended to give planar hypercoordinate structures of other chemical elements. Numerous planar configurations of various central atoms (main-group and transition-metal elements) with coordination numbers up to ten are discussed herein. The evolution of such planar configurations from small molecules to clusters, to nanospecies and to bulk solids is delineated. Some experimentally fabricated planar materials have been shown to possess unusual electrical and magnetic properties. A fundamental understanding of planar hypercoordinate chemistry and its potential will help guide its future development.

8.
J Am Chem Soc ; 136(39): 13526-9, 2014 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-25215890

RESUMO

Computed association energies and dissected nucleus-independent chemical shifts (NICS) document the mutual enhancement (or reduction) of intermolecular interactions and the aromaticity of H-bonded substrates. H-bonding interactions that increase cyclic 4n + 2 π-electron delocalization boost aromaticity. Conversely, such interactions are weakened when aromaticity is decreased as a result of more localized quinoidal π character. Representative examples of the tautomeric equilibria of π-conjugated heterocyclic compounds in protic solvents and other H-bonding environments also illustrate such H-bonding/aromaticity interplay.

9.
J Am Chem Soc ; 136(8): 3118-26, 2014 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-24450965

RESUMO

Rigorous quantum chemical investigations of the SN2 identity exchange reactions of methyl, ethyl, propyl, allyl, benzyl, propargyl, and acetonitrile halides (X = F(-), Cl(-)) refute the traditional view that the acceleration of SN2 reactions for substrates with a multiple bond at Cß (carbon adjacent to the reacting Cα center) is primarily due to π-conjugation in the SN2 transition state (TS). Instead, substrate-nucleophile electrostatic interactions dictate SN2 reaction rate trends. Regardless of the presence or absence of a Cß multiple bond in the SN2 reactant in a series of analogues, attractive Cß(δ(+))···X(δ(-)) interactions in the SN2 TS lower net activation barriers (E(b)) and enhance reaction rates, whereas repulsive Cß(δ(-))···X(δ(-)) interactions increase E(b) barriers and retard SN2 rates. Block-localized wave function (BLW) computations confirm that π-conjugation lowers the net activation barriers of SN2 allyl (1t, coplanar), benzyl, propargyl, and acetonitrile halide identity exchange reactions, but does so to nearly the same extent. Therefore, such orbital interactions cannot account for the large range of E(b) values in these systems.

10.
J Comput Chem ; 35(20): 1499-508, 2014 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-24920537

RESUMO

We use comparative natural bond orbital (NBO) and quantum theory of atoms in molecules (QTAIM) methods to analyze the proximal bay-type H···H interactions in cis-2-butene and related species, which lead to controversial interpretation as attractive "HH bonding" in the QTAIM framework. We address the challenging questions concerning well established structural, conformational, and vibrational properties of such species that appear to be sharply at odds with the QTAIM interpretation. In contrast to the purported "HH bonding" of QTAIM theory, NBO-based evaluation of steric (donor-donor) and hyperconjugative (donor-acceptor) interactions unambiguously portrays such H···H contacts as dominated by steric clashes that are only partially softened by weak secondary hyperconjugative interactions, contributing negligibly (bHH < 0.01) to H···H bond order. Additional details of NBO-based versus QTAIM-based description are provided by natural bond critical point analysis of topological bond critical point properties, which further emphasizes the contrast between the problematic bay-type H···H contacts and remaining noncontroversial (consensus) chemical bonds. NBO analysis is thereby shown to be fully consistent with the traditional physical organic concept of repulsive bay-type H···H contacts, including the corollary array of structural, conformational, and vibrational properties. © 2014 Wiley Periodicals, Inc.

11.
Chemistry ; 20(30): 9208-11, 2014 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-24909852

RESUMO

Reaction of N-heterocyclic-carbene (NHC)-stabilized disilicon (1) with CuCl gave a carbene-stabilized disilicon-copper(I) chloride complex (2). The nature of the structure and bonding in 2 has been investigated by crystallographic, spectroscopic, and computational methods. The dynamic complexation behavior of 2 was experimentally explored by variable-temperature NMR analysis.

12.
Angew Chem Int Ed Engl ; 53(30): 7875-8, 2014 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-24917212

RESUMO

C(CH3)5(+) is the first reported example of a five-coordinate carbon atom bound only to separate (that is, monodentate) carbon ligands. This species illustrate the limits of carbon bonding, exhibiting Lewis-violating "electron-deficient bonds" between the hypercoordinate carbon and its methyl groups. Though not kinetically persistent under standard laboratory conditions, its dissociation activation barriers may permit C(CH3)5(+) fleeting existence near 0 K.

13.
Angew Chem Int Ed Engl ; 53(23): 5888-91, 2014 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-24806997

RESUMO

In an attempt to produce the 2-norbornyl cation (2NB(+)) in the gas phase, protonation of norbornene was accomplished in a pulsed discharge ion source coupled with a supersonic molecular beam. The C7H11(+) cation was size-selected in a time-of-flight mass spectrometer and investigated with infrared laser photodissociation spectroscopy using the method of "tagging" with argon. The resulting vibrational spectrum, containing sharp bands in the C-H stretching and fingerprint regions, was compared to that predicted by computational chemistry. However, the measured spectrum did not match that of 2NB(+), prompting a detailed computational study of other possible isomers of C7H11(+). This study finds five isomers more stable than 2NB(+). The spectrum obtained corresponds to the 1,3-dimethylcyclopentenyl cation, the global minimum-energy structure for C7H11(+), which is produced through an unanticipated ring-opening rearrangement path.

14.
J Am Chem Soc ; 135(1): 315-21, 2013 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-23205604

RESUMO

Like the larger nonplanar Möbius rings, porphyrinoid aromaticity is not due primarily to the macrocyclic π conjugation of the corresponding annulene perimeters. The block-localized wave function (BLW)-derived aromatic stabilization energies (ASE) of several porphyrinoids reveal that, on a per atom basis, the appended 6π electron heterocycles of porphyrinoids confer aromaticity much more effectively than the macrocyclic 4n+2 π electron conjugations. There is no direct relationship between thermochemical stability of porphyrinoids and their macrocyclic 4n or 4n+2 π electron counts. Porphyrinoids having an "antiaromatic" macrocyclic 4n+2 π electron conjugation pathway (e.g., 4) as well as those having no macrocyclic conjugation (e.g., 9) can be stabilized by aromaticity. Computed nucleus independent chemical shifts (NICS) and the anisotropy of the induced current density (ACID) disclose the intricate local versus macrocyclic circulation interplay for several porphyrinoids.


Assuntos
Porfirinas/química , Estrutura Molecular , Porfirinas/síntese química , Teoria Quântica
15.
J Am Chem Soc ; 135(35): 13008-14, 2013 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-23909666

RESUMO

The "alkane branching effect" denotes the fact that simple alkanes with more highly branched carbon skeletons, for example, isobutane and neopentane, are more stable than their normal isomers, for example, n-butane and n-pentane. Although n-alkanes have no branches, the "kinks" (or "protobranches") in their chains (defined as the composite of 1,3-alkyl-alkyl interactions-including methine, methylene, and methyl groups as alkyl entities-present in most linear, cyclic, and branched alkanes, but not methane or ethane) also are associated with lower energies. Branching and protobranching stabilization energies are evaluated by isodesmic comparisons of protobranched alkanes with ethane. Accurate ab initio characterization of branching and protobranching stability requires post-self-consistent field (SCF) treatments, which account for medium range (∼1.5-3.0 Å) electron correlation. Localized molecular orbital second-order Møller-Plesset (LMO-MP2) partitioning of the correlation energies of simple alkanes into localized contributions indicates that correlation effects between electrons in 1,3-alkyl groups are largely responsible for the enhanced correlation energies and general stabilities of branched and protobranched alkanes.

16.
J Am Chem Soc ; 135(51): 19139-42, 2013 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-24299493

RESUMO

In contrast to stable phosphorus oxides such as P4O6 and P4O10 that possess iconic adamantane-like cage structures, highly reactive phosphorus oxides such as PO, PO2, and P2Ox (x = 1-5) only have been studied in the gas phase or by matrix isolation techniques. Elusive diphosphorus tetroxide, the long sought phosphorus analogue of N2O4, is particularly noteworthy. Computations predict that the oxo-bridged O2POPO form of P2O4 is energetically more favored than the P-P bonded O2P-PO2 isomer. Herein, we report the experimental realization of diphosphorus tetroxide-in its energetically disfavored O2P-PO2 form-via carbene-stabilization. The synthesis of the title compound involves the splitting of molecular oxygen by carbene-stabilized diphosphorus.

17.
J Am Chem Soc ; 135(7): 2486-8, 2013 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-23363453

RESUMO

Oxidation of carbene-stabilized diarsenic, L:As-As:L [L: = :C{N(2,6-(i)Pr(2)C(6)H(3))CH}(2)] (1), with gallium chloride in a 1:4 ratio in toluene affords the dicationic diarsene complex [L:As═As:L](2+)([GaCl(4)](-))(2) (2(2+)[GaCl(4)](2)), while oxidation of 1 with GaCl(3) in a 1:2 ratio in Et(2)O yields the monocationic diarsenic radical complex [L:AsAs:L](•+)[GaCl(4)](-) (2(•+)[GaCl(4)]). Strikingly, complex 2(•+) is the first arsenic radical to be structurally characterized in the solid state. The nature of the bonding in these complexes was probed computationally and spectroscopically.

18.
J Am Chem Soc ; 134(21): 8856-68, 2012 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-22524191

RESUMO

Despite their formal relationship to alkynes, Ar'GeGeAr', Ar'SnSnAr', and Ar*SnSnAr* [Ar' = 2,6-(2,6-iPr(2)C(6)H(3))(2)C(6)H(3); Ar* = 2,6-(2,4,6-iPr(3)C(6)H(2))(2)-3,5-iPr(2)C(6)H] exhibit high reactivity toward H(2), quite unlike acetylenes. Remarkably, the products are totally different. Ar'GeGeAr' can react with 1-3 equiv of H(2) to give mixtures of Ar'HGeGeHAr', Ar'H(2)GeGeH(2)Ar', and Ar'GeH(3). In contrast, Ar'SnSnAr' and Ar*SnSnAr* react with only 1 equiv of H(2) but give different types of products, Ar'Sn(µ-H)(2)SnAr' and Ar*SnSnH(2)Ar*, respectively. In this work, this disparate behavior toward H(2) has been elucidated by TPSSTPSS DFT computations of the detailed reaction mechanisms, which provide insight into the different pathways involved. Ar'GeGeAr' reacts with H(2) via three sequential steps: H(2) addition to Ar'GeGeAr' to give singly H-bridged Ar'Ge(µ-H)GeHAr'; isomerization of the latter to the more reactive Ge(II) hydride Ar'GeGeH(2)Ar'; and finally, addition of another H(2) to the hydride, either at a single Ge site, giving Ar'H(2)GeGeH(2)Ar', or at a Ge-Ge joint site, affording Ar'GeH(3) + Ar'HGe:. Alternatively, Ar'Ge(µ-H)GeHAr' also can isomerize into the kinetically stable Ar'HGeGeHAr', which cannot react with H(2) directly but can be transformed to the reactive Ar'GeGeH(2)Ar'. The activation of H(2) by Ar'SnSnAr' is similar to that by Ar'GeGeAr'. The resulting singly H-bridged Ar'Sn(µ-H)SnHAr' then isomerizes into Ar'HSnSnHAr'. The subsequent facile dissociation of the latter gives two Ar'HSn: species, which then reassemble into the experimental product Ar'Sn(µ-H)(2)SnAr'. The reaction of Ar*SnSnAr* with H(2) forms in the kinetically and thermodynamically more stable Ar*SnSnH(2)Ar* product rather than Ar*Sn(µ-H)(2)SnAr*. The computed mechanisms successfully rationalize all of the known experimental differences among these reactions and yield the following insights into the behavior of the Ge and Sn species: (I) The active sites of Ar'EEAr' (E = Ge, Sn) involve both E atoms, and the products with H(2) are the singly H-bridged Ar'E(µ-H)EHAr' species rather than Ar'HEEHAr' or Ar'EEH(2)Ar'. (II) The heavier alkene congeners Ar'HEEHAr' (E = Ge, Sn) cannot activate H(2) directly. Instead, Ar'HGeGeHAr' must first isomerize into the more reactive Ar'GeGeH(2)Ar'. Interestingly, the subsequent H(2) activation by Ar'GeGeH(2)Ar' can take place on either a single Ge site or a joint Ge-Ge site, but Ar'SnSnH(2)Ar' is not reactive toward H(2). The higher reactivity of Ar'GeGeH(2)Ar' in comparison with Ar'SnSnH(2)Ar' is due to the tendency of group 14 elements lower in the periodic table to have more stable lone pairs (i.e., the inert pair effect) and is responsible for the differences between the reactions of Ar'EEAr' (E = Ge, Sn) with H(2). Similarly, the carbene-like Ar'HGe: is more reactive toward H(2) than is Ar'HSn:. (III) The doubly H-bridged Ar'E(µ-H)(2)EAr' (E = Ge, Sn) species are not reactive toward H(2).

19.
J Am Chem Soc ; 134(25): 10584-94, 2012 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-22594586

RESUMO

The transition states (TSs) of 5-endo-dig and 5-endo-trig anionic ring closures are the first unambiguous examples of nonpericyclic reactions with TSs stabilized by aromaticity. Their five-center, six-electron in-plane aromaticity is revealed by the diatropic dissected nucleus-independent chemical shifts, -24.1 and -13.7 ppm, respectively, resulting from the delocalization of the lone pair at the nucleophilic center, a σ CC bond, and an in-plane alkyne (or alkene) π bond. Other seemingly analogous exo and endo cyclization TSs do not have these features. A symmetry-enhanced combination of through-space and through-bond interactions explains the anomalous geometric, energetic, and electronic features of the 5-endo ring closure transition state. Anionic 5-endo cyclizations can be considered to be "aborted" [2,3]-sigmatropic shifts. The connection between anionic cyclizations and sigmatropic shifts offers new possibilities for the design and electronic control of anionic isomerizations.

20.
J Am Chem Soc ; 134(24): 9953-5, 2012 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-22670857

RESUMO

The reaction of N-heterocyclic carbene, L:, with BeCl(2) quantitatively yields L:BeCl(2)1 (L: = :C{N(2,6-Pr(i)(2)C(6)H(3))CH}(2)). The carbene-stabilized beryllium borohydride monomer L:Be(BH(4))(2)2 is prepared by the reaction of 1 with LiBH(4). Compound 3, prepared by the reaction of 2 with Na(2)[Fe(CO)(4)]·dioxane, represents an unusual "dual reduction" of the imidazole ring (i.e., hydroboration of the C═C backbone and hydrogenation of the C2 carbene center).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA